Skip to main content

pylibcudf - Python bindings for libcudf

Project description

 cuDF - GPU DataFrames

📢 cuDF can now be used as a no-code-change accelerator for pandas! To learn more, see here!

cuDF (pronounced "KOO-dee-eff") is a GPU DataFrame library for loading, joining, aggregating, filtering, and otherwise manipulating data. cuDF leverages libcudf, a blazing-fast C++/CUDA dataframe library and the Apache Arrow columnar format to provide a GPU-accelerated pandas API.

You can import cudf directly and use it like pandas:

import cudf

tips_df = cudf.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv")
tips_df["tip_percentage"] = tips_df["tip"] / tips_df["total_bill"] * 100

# display average tip by dining party size
print(tips_df.groupby("size").tip_percentage.mean())

Or, you can use cuDF as a no-code-change accelerator for pandas, using cudf.pandas. cudf.pandas supports 100% of the pandas API, utilizing cuDF for supported operations and falling back to pandas when needed:

%load_ext cudf.pandas  # pandas operations now use the GPU!

import pandas as pd

tips_df = pd.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv")
tips_df["tip_percentage"] = tips_df["tip"] / tips_df["total_bill"] * 100

# display average tip by dining party size
print(tips_df.groupby("size").tip_percentage.mean())

Resources

See the RAPIDS install page for the most up-to-date information and commands for installing cuDF and other RAPIDS packages.

Installation

CUDA/GPU requirements

  • CUDA 11.2+
  • NVIDIA driver 450.80.02+
  • Volta architecture or better (Compute Capability >=7.0)

Pip

cuDF can be installed via pip from the NVIDIA Python Package Index. Be sure to select the appropriate cuDF package depending on the major version of CUDA available in your environment:

For CUDA 11.x:

pip install --extra-index-url=https://pypi.nvidia.com cudf-cu11

For CUDA 12.x:

pip install --extra-index-url=https://pypi.nvidia.com cudf-cu12

Conda

cuDF can be installed with conda (via miniforge) from the rapidsai channel:

conda install -c rapidsai -c conda-forge -c nvidia \
    cudf=25.06 python=3.13 cuda-version=12.8

We also provide nightly Conda packages built from the HEAD of our latest development branch.

Note: cuDF is supported only on Linux, and with Python versions 3.10 and later.

See the RAPIDS installation guide for more OS and version info.

Build/Install from Source

See build instructions.

Contributing

Please see our guide for contributing to cuDF.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylibcudf_cu12-25.6.0-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (28.5 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pylibcudf_cu12-25.6.0-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (28.1 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pylibcudf_cu12-25.6.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (28.6 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pylibcudf_cu12-25.6.0-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (28.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pylibcudf_cu12-25.6.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (28.7 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pylibcudf_cu12-25.6.0-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (28.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pylibcudf_cu12-25.6.0-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (28.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pylibcudf_cu12-25.6.0-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (28.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

File details

Details for the file pylibcudf_cu12-25.6.0-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pylibcudf_cu12-25.6.0-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0dbff5f2ffe16d5fd406b9f2c9c377994ec4c54fbb710c8386b8a48728e08b35
MD5 ab692b2349297a174bebe9983a7571d6
BLAKE2b-256 2662e7ea33f04ccb4e6e31920abca5099b5e4f63ae20632f2fa8f09ed952397f

See more details on using hashes here.

File details

Details for the file pylibcudf_cu12-25.6.0-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pylibcudf_cu12-25.6.0-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 dc7f8faf91798129f5a0f688eb5b1823e9a25d1e9905eccda6b3b0a830f97846
MD5 00846f71fba876fe5fab5666cf02717e
BLAKE2b-256 e89be6c665394990f56a1bed153078e76a6003a49af2de98312223f4d9ed0839

See more details on using hashes here.

File details

Details for the file pylibcudf_cu12-25.6.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pylibcudf_cu12-25.6.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 497f3dff5adaa49373a118a5c9841d8cd586681b1488e0a4f2f8a4e0f8b59efe
MD5 83bbb44ec8b72a0f1c5ec4e07ba95c39
BLAKE2b-256 35fa7ee7a0bdb05f4a2e8779695d146efea252678e5b6180547c2f117388a774

See more details on using hashes here.

File details

Details for the file pylibcudf_cu12-25.6.0-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pylibcudf_cu12-25.6.0-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 737e88987b0bc99ab66adaf5b4a262620a5a7bfade45550ccb3bc7952432cdfa
MD5 044275b8ecf0888adfca00f311d88613
BLAKE2b-256 a54ecd4dfb1ebf3a51e3532829b9ca7216dc3107a93a5bd3ba13043337f5bae9

See more details on using hashes here.

File details

Details for the file pylibcudf_cu12-25.6.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pylibcudf_cu12-25.6.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 37478c6020722f70b1d6c2e9fab75ec60bf1749359229d5a7508206a57c544fb
MD5 e9f9b9293d3214e9c9558a2ec8a8b1ef
BLAKE2b-256 33861d0ab14da023fce5eb9a1bf3a651c8a0f3cfcc5e90c387a34358ccfcb74b

See more details on using hashes here.

File details

Details for the file pylibcudf_cu12-25.6.0-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pylibcudf_cu12-25.6.0-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 f0133c0ddcfac0d90b3ed043daad7e4d9f8214cf6531c6793976b58285806578
MD5 7d3f8fe04498c81d6b1693333b7c2c97
BLAKE2b-256 1f14f26018bf09f722d52619066d08460b94b548441c17d13f4df818f34330ae

See more details on using hashes here.

File details

Details for the file pylibcudf_cu12-25.6.0-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pylibcudf_cu12-25.6.0-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d934626ac63f11643bee5267ac380aa0701b1faa7d2274b7aaf494968028bb8d
MD5 f78516a202a99034aac94a8535c7bac9
BLAKE2b-256 63146ad3e9c666f43aed700cf45baa3032c5ed8bbb2ff53cf40da10fab54cb12

See more details on using hashes here.

File details

Details for the file pylibcudf_cu12-25.6.0-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pylibcudf_cu12-25.6.0-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7c7156a5c8f273be4075515d429d9a918266fd86244da5070e43b7dc12b6bb2c
MD5 31f5bed898cd647997c20b300d62bbcf
BLAKE2b-256 92d475b5dee519a773d08c1b44f3d673ad34ea089d0ed9c6afe6e3a743593978

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page