Skip to main content

Python scripting interface of MOOSE Simulator (https://moose.ncbs.res.in)

Project description

Python package

MOOSE

MOOSE is the Multiscale Object-Oriented Simulation Environment. It is designed to simulate neural systems ranging from subcellular components and biochemical reactions to complex models of single neurons, circuits, and large networks. MOOSE can operate at many levels of detail, from stochastic chemical computations, to multicompartment single-neuron models, to spiking neuron network models.

MOOSE is multiscale: It can do all these calculations together. For example it handles interactions seamlessly between electrical and chemical signaling. MOOSE is object-oriented. Biological concepts are mapped into classes, and a model is built by creating instances of these classes and connecting them by messages. MOOSE also has classes whose job is to take over difficult computations in a certain domain, and do them fast. There are such solver classes for stochastic and deterministic chemistry, for diffusion, and for multicompartment neuronal models.

MOOSE is a simulation environment, not just a numerical engine: It provides data representations and solvers (of course!), but also a scripting interface with Python, graphical displays with Matplotlib, PyQt, and VPython, and support for many model formats. These include SBML, NeuroML, GENESIS kkit and cell.p formats, HDF5 and NSDF for data writing.

This is the core computational engine of MOOSE simulator. This repository contains C++ codebase and python interface called pymoose. For more details about MOOSE simulator, visit https://moose.ncbs.res.in .


Installation

See docs/source/install/INSTALL.md for instructions on installation.

Examples and Tutorials

v4.1.4 – Incremental Release over v4.1.0 "Jhangri"

Patch release focusing on accurate version reporting, bug fixes, and documentation improvements.

ABOUT VERSION 4.1.4, Jhangri

Jhangri is an Indian sweet in the shape of a flower. It is made of white-lentil (Vigna mungo) batter, deep-fried in ornamental shape to form the crunchy, golden body, which is then soaked in sugar syrup lightly flavoured with spices.

This release has the following changes:

Installation

Installing released version from PyPI using pip

This version is available for installation via pip. To install the latest release, run

conda create -n moose python=3.13 gsl hdf5 numpy vpython matplotlib -c conda-forge
conda activate moose
pip install pymoose

Post installation

You can check that moose is installed and initializes correctly by running:

$ python -c "import moose; ch = moose.HHChannel('ch'); moose.le()"

This should show

Elements under /
    /Msgs
    /clock
    /classes
    /postmaster
    /ch	

Now you can import moose in a Python script or interpreter with the statement:

>>> import moose

Bug Fixes

  • Fixed a crash (segmentation fault) that could occur when deleting function objects
  • Fixed incorrect evaluation order in function objects that could lead to wrong results in some models
  • Improved stability of expression parsing when working with dynamically changing expressions
  • Fixed setNumVar issue in Function class - setting the number of x variables with numVar field is no longer required, simply updating
    the expression now works correctly

Model Import Improvements

  • Improved SWC morphology reader with clearer hierarchical naming scheme for dendritic compartments, making imported neuron structures easier to interpret and debug

Documentation

  • Updated build instructions for macOS

Build and Packaging

  • Improved GitHub Actions workflows for release packages
  • Enabled manual triggering of release workflows
  • Fixed permission issues during GitHub release creation

LICENSE

MOOSE is released under GPLv3.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

pymoose-4.1.4-cp314-cp314-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.14Windows x86-64

pymoose-4.1.4-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pymoose-4.1.4-cp314-cp314-macosx_15_0_arm64.whl (5.8 MB view details)

Uploaded CPython 3.14macOS 15.0+ ARM64

pymoose-4.1.4-cp314-cp314-macosx_14_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.14macOS 14.0+ ARM64

pymoose-4.1.4-cp313-cp313-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.13Windows x86-64

pymoose-4.1.4-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pymoose-4.1.4-cp313-cp313-macosx_15_0_arm64.whl (5.8 MB view details)

Uploaded CPython 3.13macOS 15.0+ ARM64

pymoose-4.1.4-cp313-cp313-macosx_14_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.13macOS 14.0+ ARM64

pymoose-4.1.4-cp312-cp312-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.12Windows x86-64

pymoose-4.1.4-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pymoose-4.1.4-cp312-cp312-macosx_15_0_arm64.whl (5.8 MB view details)

Uploaded CPython 3.12macOS 15.0+ ARM64

pymoose-4.1.4-cp312-cp312-macosx_14_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.12macOS 14.0+ ARM64

pymoose-4.1.4-cp311-cp311-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.11Windows x86-64

pymoose-4.1.4-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pymoose-4.1.4-cp311-cp311-macosx_15_0_arm64.whl (5.8 MB view details)

Uploaded CPython 3.11macOS 15.0+ ARM64

pymoose-4.1.4-cp311-cp311-macosx_14_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.11macOS 14.0+ ARM64

pymoose-4.1.4-cp310-cp310-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.10Windows x86-64

pymoose-4.1.4-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pymoose-4.1.4-cp310-cp310-macosx_15_0_arm64.whl (5.8 MB view details)

Uploaded CPython 3.10macOS 15.0+ ARM64

pymoose-4.1.4-cp310-cp310-macosx_14_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.10macOS 14.0+ ARM64

pymoose-4.1.4-cp39-cp39-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.9Windows x86-64

pymoose-4.1.4-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pymoose-4.1.4-cp39-cp39-macosx_15_0_arm64.whl (5.8 MB view details)

Uploaded CPython 3.9macOS 15.0+ ARM64

pymoose-4.1.4-cp39-cp39-macosx_14_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.9macOS 14.0+ ARM64

pymoose-4.1.4-cp38-cp38-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.8Windows x86-64

pymoose-4.1.4-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

File details

Details for the file pymoose-4.1.4-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: pymoose-4.1.4-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.0

File hashes

Hashes for pymoose-4.1.4-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 cd1c28fd4b2808711e56174a57b8c7a69484a1a0bb2a2f53aeb5ee062e3e7cd2
MD5 7495b48220b4435d7733a472e1ebb31f
BLAKE2b-256 7c0af06ff1a60ffebcafea977d0ab3fdd737edafe3f3e7c41f02567bbc2f0adc

See more details on using hashes here.

File details

Details for the file pymoose-4.1.4-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pymoose-4.1.4-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5185ba7dd8a407796e660434198170fe8440da4698cfbbbcda57cd069dd0a70f
MD5 1e2be008dad6832fc1485fbe14159987
BLAKE2b-256 b12fda5617a223b629206ce2eb56b2e0c6dddf423da9dc082912de723eabc749

See more details on using hashes here.

File details

Details for the file pymoose-4.1.4-cp314-cp314-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for pymoose-4.1.4-cp314-cp314-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 d8fe5694c17fc920f97b8a7c69acc09d8116a7d37f9b37d11f415fce3c78232a
MD5 3db8903140ff6a9f7c6044f44e26e966
BLAKE2b-256 3d039d3d8f1cdc2d3c06cd7f8ba6ab1a7beafb9a6499e17102fc99f722efa99d

See more details on using hashes here.

File details

Details for the file pymoose-4.1.4-cp314-cp314-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pymoose-4.1.4-cp314-cp314-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 e29db2d05785eacae1c5d2d691ccaa9b856a41cb82cb3b2395d58f39b85dcd15
MD5 22769924840726e3ee9135853e369939
BLAKE2b-256 2b05d08eafb9b0b15fb42d4f1e6795c8fd5e946be9e86c2c65881e5ccb69d315

See more details on using hashes here.

File details

Details for the file pymoose-4.1.4-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: pymoose-4.1.4-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.0

File hashes

Hashes for pymoose-4.1.4-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 8af4cdd7936d55a78265390ae59d44068c0a50f9da9b1925236af5eaa594c09e
MD5 447707ba4ba8d6cd795dd6414f795457
BLAKE2b-256 e6a0d428f61a1eeb449152eaa6871f2eb89c67e69b75e93737e1607c08a73c41

See more details on using hashes here.

File details

Details for the file pymoose-4.1.4-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pymoose-4.1.4-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 be745d024e0fa9c2ba76850204b4cd6d9728dbb53748ac69947befc243d211f4
MD5 2041c97e3c592c25ae69f0d34490a32b
BLAKE2b-256 12b8af3a83dfda6bae765354b5c04c15dfc5dfc0b15931ce73f5a386dd663148

See more details on using hashes here.

File details

Details for the file pymoose-4.1.4-cp313-cp313-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for pymoose-4.1.4-cp313-cp313-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 a5d06246d8e498010a589b22e074cc2122b8c918f8cdd5feb5892e673d0bdbc6
MD5 431eb133a9ab87e6e0ca544854008167
BLAKE2b-256 fcf91fa2388850fb7503c4bfc2765cd5d8d600773ad8b9e84c6054cc7c9dcaa6

See more details on using hashes here.

File details

Details for the file pymoose-4.1.4-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pymoose-4.1.4-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 24894ab1849f763d5a1386b375a04d1830e08604639a061fea602284750e748e
MD5 d3e7a9170e115cc8bdc12d681e46b088
BLAKE2b-256 fb8621c789c1fd917def21db152649279e065ab140f028336ee8356aae80d794

See more details on using hashes here.

File details

Details for the file pymoose-4.1.4-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pymoose-4.1.4-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.0

File hashes

Hashes for pymoose-4.1.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9b57f7628db521cb328bd44ec5f5b8a657fb7c258b252e7e418a3148b1b05335
MD5 65ffad85483267b3a5655e4f467e67c8
BLAKE2b-256 0e5e567ea60253001638996387a49c6759a099e9fc83502ea2e5114a01982893

See more details on using hashes here.

File details

Details for the file pymoose-4.1.4-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pymoose-4.1.4-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 bf27da688bc4acec4f06876ea7b306a0ff85c1734cc014a9e22cafefa481b699
MD5 04d54cf26af0f7ad6d8dd6fe31935143
BLAKE2b-256 4ba7bb1713cbc4e1b762922bc9b9b3e0d4203e84257c10bf7166a2d13f4de007

See more details on using hashes here.

File details

Details for the file pymoose-4.1.4-cp312-cp312-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for pymoose-4.1.4-cp312-cp312-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 cb0233a319dfa858f0fb0942d61bac503680c1218bba0f961bf67daea0f051e6
MD5 0664547c5b927cad0acf672f39aaf4d4
BLAKE2b-256 af6ccc035d1003a24b7cdb6f0ac22a8ac11ed6e220d3dc46d8dec4b820abd16d

See more details on using hashes here.

File details

Details for the file pymoose-4.1.4-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pymoose-4.1.4-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 d0f6cfc959e5b8cea7de3a5a5235312582c96bf63132233c68dd2393c78408bd
MD5 d9aced899fbadff6217c3ecc7dc939e5
BLAKE2b-256 9fd940388dc749f7fa3d001f1e0433e80484e2564fc893e641592ae31967ebe3

See more details on using hashes here.

File details

Details for the file pymoose-4.1.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pymoose-4.1.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.0

File hashes

Hashes for pymoose-4.1.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7401073fa72c82d149ee03d6695912ad481dbdf2e2b21dc4338f8817d51b6ddb
MD5 9d0a2b0abc97ff6f4c2ee2428a2e6cb5
BLAKE2b-256 ab68b764829ade6913f69ac9f6a05f5d2ed37b69e8fb5a6856f0ebf0e3faf2ff

See more details on using hashes here.

File details

Details for the file pymoose-4.1.4-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pymoose-4.1.4-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d7eabede9793d87ce6e25182901236d2698aa2d8358be0b4619d5179662981da
MD5 e90a06e99b30422423ed419ecc1c77a8
BLAKE2b-256 793fde0c0ec6f42cb7632dfa6c046588901cc05fbedf40e8558f8aca1c1de0cb

See more details on using hashes here.

File details

Details for the file pymoose-4.1.4-cp311-cp311-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for pymoose-4.1.4-cp311-cp311-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 918477f3ed9ff613f998fe3f076b78eeb56fc51cffd2ac6b968c638eb7d627ba
MD5 28c44b3171c39f6d6ddc1ed7ad58c4f1
BLAKE2b-256 a765a8e1d89f5304ac0fa394ea06849422aec2c73f1b55b77281e80725274b0a

See more details on using hashes here.

File details

Details for the file pymoose-4.1.4-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pymoose-4.1.4-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 c494b4eaab7b5a5b227791a622943c0816743103bfeb3320be00ade0f234dadd
MD5 d6483545a4781e7defcc95a75aec900e
BLAKE2b-256 4571d7c0f4c6fa99274778c9ebba59913403686e428287b2bedfeef46417705c

See more details on using hashes here.

File details

Details for the file pymoose-4.1.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pymoose-4.1.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.0

File hashes

Hashes for pymoose-4.1.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7c2919f206241393ca7db45052ded924474d516dd8f0526237d7eac6e6eeb83e
MD5 951462a5b17f5f5123db2ac47dc7ad59
BLAKE2b-256 12053a762c6761448d9f5200f909adc284bd11fc73d3a70f9a78adadec72311c

See more details on using hashes here.

File details

Details for the file pymoose-4.1.4-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pymoose-4.1.4-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f7be2b5cb39988eecbf907f91c333cd67fb0389d355a3e4989bb62890ef23e23
MD5 93da800075807b529b27bd26f0656fff
BLAKE2b-256 7ccafccf8498d8d6783d734d77edc93039ef33a2b91faf778d200dd749833ad6

See more details on using hashes here.

File details

Details for the file pymoose-4.1.4-cp310-cp310-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for pymoose-4.1.4-cp310-cp310-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 2e6a78c8412b990400711909c541b81a79fea271d516a68dd39c7fa6ae0de90b
MD5 141d748f63d517f9a4f02c4970253183
BLAKE2b-256 17e4ea75c6187130b578f2dc0d2ae5b9a3cbe0bd46584e43c3ebaddbe3283812

See more details on using hashes here.

File details

Details for the file pymoose-4.1.4-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pymoose-4.1.4-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 24e56cf3e31ae10abbf85d060a495cbc10d74f42fe2afca22c864ccf7995a6aa
MD5 01043e2ee12e67c75fa197635db7f431
BLAKE2b-256 0f2f6657ae45c5c0daaeed71432070ab01e1b53600d6ff91cd672e52a1b1e689

See more details on using hashes here.

File details

Details for the file pymoose-4.1.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pymoose-4.1.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.0

File hashes

Hashes for pymoose-4.1.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 092b711a7ca213693c7c1391e468e251e317abe58558209a412eb42a76f6c0c7
MD5 24b7d8cfa44d3f53e76af3c32ee74afa
BLAKE2b-256 d1c16286e857294fba81b0d0d03ed6ef74e94602ee65da9ccc2b65f631b17fc0

See more details on using hashes here.

File details

Details for the file pymoose-4.1.4-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pymoose-4.1.4-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 3fc313be2f937dbab35fc569be50254d1cdc0e60cb59d30e31e33254ca02b6e7
MD5 2e7af2ad69acc5a551c84f6a7526dbb0
BLAKE2b-256 1ee08a333159011e1db3c63908d023c0e1bf9ad611030e619d5d92c5f5cc8607

See more details on using hashes here.

File details

Details for the file pymoose-4.1.4-cp39-cp39-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for pymoose-4.1.4-cp39-cp39-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 d4e4c6ade20a422f6c6b498c59152ee3dd26bb0235db8bd3bfeea465a4f5bf39
MD5 fb8e5d91dc8168a115baa19fd1f0672b
BLAKE2b-256 6056949cedb243406a6d72bc0fca9f5ddafbf610f6b99dd661564b8bbe94b086

See more details on using hashes here.

File details

Details for the file pymoose-4.1.4-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pymoose-4.1.4-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 ac8832932ffebaba1f720828ac7b82891a2c0604e67913eca3532920636ab212
MD5 c3ee7d1945707ed1d0c7ff01726be825
BLAKE2b-256 0891de0dfd9391d554c545fa0ccb5b51c21f267d0ee7412890ebea2bab49f2d8

See more details on using hashes here.

File details

Details for the file pymoose-4.1.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pymoose-4.1.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.0

File hashes

Hashes for pymoose-4.1.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 fc10835f945fc35d58411932807b55cd0950fee67ba87e640a4a6f95c5c3e3fa
MD5 a543e49838cc3aca539d35abf979b36d
BLAKE2b-256 2fe4b1b66cb6e63602ffcee826ba7aeec085c56559147ed66c19e3abf0aa6010

See more details on using hashes here.

File details

Details for the file pymoose-4.1.4-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pymoose-4.1.4-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 fd197caa0dc9d4bdd0cf4a6f5fc78ada93bac076c1a324939500060efb3e5992
MD5 13af2176edf87662f8e5734cd4648ffb
BLAKE2b-256 f03cf21c3f242d352a3a41e8f962691861b9f9fd538af1d012bbc3abbd8d3a62

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page