This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (
Help us improve Python packaging - Donate today!
Project Description

This library allows to generate Nearly Orthogonal Latin Hypercubes (NOLH) according to Cioppa (2007) and De Rainville et al. (2012) and reference therein.


Clone the repository

$ git clone

and from the cloned directory type

$ python install

PyNOLH requires Numpy.


The library contains a single generator and a function to retrieve the necessary parameters from a desired dimensionality. To generate a 6 dimension NOLH from the indentity permutation:

import pynolh

dim = 6
m, q, r = pynolh.params(dim)
conf = range(q)
remove = range(dim - r, dim)
nolh = pynolh.nolh(conf, remove)

The NOLH returned is a numpy array with one row being one sample.

You can also produce a NOLH from a random permutation configuration vector and remove random columns:

import pynolh
import random

dim = 6
m, q, r = pynolh.params(dim)
conf = random.sample(range(q), q)
remove = random.sample(range(q), r)
nolh = pynolh.nolh(conf, remove)

The nolh() function accepts configurations with either numbers in [0 q-1] or [1 q].

import pynolh

dim = 6
m, q, r = pynolh.params(dim)
conf = range(1, q + 1)
remove = range(dim - r + 1, dim + 1)
nolh = pynolh.nolh(conf, remove)

Some prebuilt configurations are given within the library. The CONF module attribute is a dictionary with the dimension as key and a configuration, columns to remove pair as value.

import pynolh

conf, remove = pynolh.CONF[6]
nolh = pynolh.nolh(conf, remove)

The configurations for dimensions 2 to 7 are from Cioppa (2007) and 8 to 29 are from De Rainville et al. 2012.

Configuration Repository

See the Quasi Random Sequences Repository for more configurations.


Cioppa, T. M., & Lucas, T. W. (2007). Efficient nearly orthogonal and space-filling Latin hypercubes. Technometrics, 49(1).

De Rainville, F.-M., Gagné, C., Teytaud, O., & Laurendeau, D. (2012). Evolutionary optimization of low-discrepancy sequences. ACM Transactions on Modeling and Computer Simulation (TOMACS), 22(2), 9.

Release History

Release History


This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
pynolh-0.1.tar.gz (6.3 kB) Copy SHA256 Checksum SHA256 Source Mar 28, 2014

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting