Skip to main content

Python interface for nvjpeg. Encode/Decode Jpeg with Nvidia GPU Hardware Acceleration.

Project description

NvJpeg - Python

Require

  • nvjpeg
  • cuda >= 10.2
  • numpy >= 1.7
  • python >= 3.6
  • gcc >= 7.5
  • make >= 4.1

System

Linux(x86, x86_64) Nvidia Jetson OS

Install

pip install pynvjpeg

Usage

0. Init PyNvJpeg

from nvjpeg import NvJpeg
nj = NvJpeg()

1. Use PyNvJpeg

Read Jpeg File to Numpy

img = nj.read("_JPEG_FILE_PATH_")
# like cv2.imread("_JPEG_FILE_PATH_")

Write Numpy to Jpeg File

nj.write("_JPEG_FILE_PATH_", img)
# or nj.write("_JPEG_FILE_PATH_", quality)
# int quality default 70, mean jpeg quality
# like cv2.imwrite("_JPEG_FILE_PATH_", img)

Decode Jpeg bytes in variable

img = nj.decode(jpeg_bytes)
# like cv2.imdecode(variable)

Encode image numpy array to bytes

jpeg_bytes = nj.encode(img)
# or with jpeg quality
# jpeg_bytes = nj.encode(img, 70)
# int quality default 70, mean jpeg quality

# like cv2.imencode(".jpg", variable)[1]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pynvjpeg-0.0.13.tar.gz (11.3 kB view details)

Uploaded Source

File details

Details for the file pynvjpeg-0.0.13.tar.gz.

File metadata

  • Download URL: pynvjpeg-0.0.13.tar.gz
  • Upload date:
  • Size: 11.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.0

File hashes

Hashes for pynvjpeg-0.0.13.tar.gz
Algorithm Hash digest
SHA256 d2d84f26395178414c325a18dd83f7fa0fe83b14d9d0b0e8bc0adb7648738360
MD5 94cc0603f6e0d589ffb8c7fa61a41bb0
BLAKE2b-256 4ad3cdafe2fdebae3a7e219e8db0ddc8c9f67ee72a466dc095f56b12c0280252

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page