Skip to main content

A high-throughput seismic phase associator

Project description

PyPI - License GitHub Workflow Status Read the Docs PyPI Python 3.9 DOI

PyOcto is a high-throughput seismic phase associator. The best way to get started with PyOcto is through our interactive examples:

Examples
Basics Open In Colab
Velocity models Open In Colab
Interfaces Open In Colab

If you're looking for further guidance, for example, a guide on how to set the associator parameters, check out the PyOcto documentation.

Installation

The easiest way to install PyOcto is through pip:

pip install pyocto

There are prebuilt wheels available for Linux, Mac OS, and Windows. In case you want to use 1D velocity models, you will need to install the optional dependency pyrocko. pyrocko is available through the standard channels, such as pip or conda.

git clone https://github.com/yetinam/pyocto.git
cd pyocto
git submodule update --init
pip install .[test]

To verify your installation is working, use pytest tests/.

Warning: PyOcto uses POSIX threads for threading. As these are not available on Windows, the Windows version is single-threaded. Therefore, we do not recommend running larger computations on Windows.

References

If you're using PyOcto in your work, please cite:

Münchmeyer, J. (2024). PyOcto: A high-throughput seismic phase associator. Seismica. [Paper].

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyocto-0.1.9.tar.gz (1.2 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

pyocto-0.1.9-pp310-pypy310_pp73-win_amd64.whl (128.0 kB view details)

Uploaded PyPyWindows x86-64

pyocto-0.1.9-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (166.1 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

pyocto-0.1.9-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (176.7 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ i686

pyocto-0.1.9-pp39-pypy39_pp73-win_amd64.whl (127.9 kB view details)

Uploaded PyPyWindows x86-64

pyocto-0.1.9-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (166.2 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

pyocto-0.1.9-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (176.5 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ i686

pyocto-0.1.9-cp312-cp312-win_arm64.whl (106.8 kB view details)

Uploaded CPython 3.12Windows ARM64

pyocto-0.1.9-cp312-cp312-win_amd64.whl (128.8 kB view details)

Uploaded CPython 3.12Windows x86-64

pyocto-0.1.9-cp312-cp312-win32.whl (105.4 kB view details)

Uploaded CPython 3.12Windows x86

pyocto-0.1.9-cp312-cp312-musllinux_1_1_x86_64.whl (688.4 kB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

pyocto-0.1.9-cp312-cp312-musllinux_1_1_i686.whl (751.1 kB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ i686

pyocto-0.1.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (166.3 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

pyocto-0.1.9-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (177.4 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686

pyocto-0.1.9-cp312-cp312-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl (251.6 kB view details)

Uploaded CPython 3.12macOS 10.9+ universal2 (ARM64, x86-64)macOS 10.9+ x86-64macOS 11.0+ ARM64macOS 11.0+ universal2 (ARM64, x86-64)

pyocto-0.1.9-cp311-cp311-win_arm64.whl (107.3 kB view details)

Uploaded CPython 3.11Windows ARM64

pyocto-0.1.9-cp311-cp311-win_amd64.whl (129.0 kB view details)

Uploaded CPython 3.11Windows x86-64

pyocto-0.1.9-cp311-cp311-win32.whl (105.3 kB view details)

Uploaded CPython 3.11Windows x86

pyocto-0.1.9-cp311-cp311-musllinux_1_1_x86_64.whl (689.4 kB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

pyocto-0.1.9-cp311-cp311-musllinux_1_1_i686.whl (750.6 kB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ i686

pyocto-0.1.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (167.4 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

pyocto-0.1.9-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (177.9 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686

pyocto-0.1.9-cp311-cp311-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl (251.2 kB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)macOS 10.9+ x86-64macOS 11.0+ ARM64macOS 11.0+ universal2 (ARM64, x86-64)

pyocto-0.1.9-cp310-cp310-win_arm64.whl (106.6 kB view details)

Uploaded CPython 3.10Windows ARM64

pyocto-0.1.9-cp310-cp310-win_amd64.whl (128.2 kB view details)

Uploaded CPython 3.10Windows x86-64

pyocto-0.1.9-cp310-cp310-win32.whl (104.9 kB view details)

Uploaded CPython 3.10Windows x86

pyocto-0.1.9-cp310-cp310-musllinux_1_1_x86_64.whl (688.3 kB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

pyocto-0.1.9-cp310-cp310-musllinux_1_1_i686.whl (749.4 kB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ i686

pyocto-0.1.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (165.7 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

pyocto-0.1.9-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (176.7 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686

pyocto-0.1.9-cp310-cp310-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl (248.4 kB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)macOS 10.9+ x86-64macOS 11.0+ ARM64macOS 11.0+ universal2 (ARM64, x86-64)

pyocto-0.1.9-cp39-cp39-win_arm64.whl (106.8 kB view details)

Uploaded CPython 3.9Windows ARM64

pyocto-0.1.9-cp39-cp39-win_amd64.whl (128.5 kB view details)

Uploaded CPython 3.9Windows x86-64

pyocto-0.1.9-cp39-cp39-win32.whl (105.0 kB view details)

Uploaded CPython 3.9Windows x86

pyocto-0.1.9-cp39-cp39-musllinux_1_1_x86_64.whl (688.6 kB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

pyocto-0.1.9-cp39-cp39-musllinux_1_1_i686.whl (749.5 kB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ i686

pyocto-0.1.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (166.1 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

pyocto-0.1.9-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (177.1 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686

pyocto-0.1.9-cp39-cp39-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl (248.5 kB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)macOS 10.9+ x86-64macOS 11.0+ ARM64macOS 11.0+ universal2 (ARM64, x86-64)

File details

Details for the file pyocto-0.1.9.tar.gz.

File metadata

  • Download URL: pyocto-0.1.9.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.9.tar.gz
Algorithm Hash digest
SHA256 6f985b92dc5a83b14e6744ce74e1b498a96fadeaf4eb6f7be35408ad3b736d19
MD5 6003ea9fec6a5d8c972bd06833927212
BLAKE2b-256 62e75f6cf3b25bdaab74a87088daff9ab05e31ef333403cd76a6def6685787f4

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.9-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 3a4567fc19b205cdd1fc789286bfc6c27d4fa09c62477c9236de63eb3d6585ff
MD5 83c1e686805d1363b8af66715672eb2f
BLAKE2b-256 f2c17342d5e552d4e35b4155194f6f41c64d42b8550a1dfb9ed890f06c660faf

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.9-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8b559d89599b48ea867cccb8a22a9cde7115f8ce4b321f2da2166e241db50d81
MD5 4415c867321455eb7733f5d002e67e27
BLAKE2b-256 03f6e4eb850ce1496cb4063e5e54be4bd77c7dd13cc9eeed04afda119e30a5e3

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.9-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 816dbf8c4053c2bcfcd6fb614b763e39cd19a92be838f693f6f000423d3ce612
MD5 003e73a99a7ea98cd924a10c882f0424
BLAKE2b-256 9b63deed96981fe99534f37145dd63e95355c1235705bb96f03f3ff2bb529f84

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.9-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 6b0593eddf48639a22aea376cd1488b14d8fef2f943f4fff1906402014a27a45
MD5 2934f43c8faf98af100a3b8909ffd936
BLAKE2b-256 8402e907c50d62ea24a1d0e0f73d6bacff23ec4750717b545db32b6cd4934a13

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.9-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f1497df8e511fdc11912878e9ba6aabc1001d0c25d91cbaa6544ab348891a5d9
MD5 d6269766779d578cc57f2324e7b8b466
BLAKE2b-256 e938a4033f20931f7d6dd0344297837a93ed38feab729e9bf98cb0ac92cea453

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.9-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 37bd9353fe2c2c44f8bb34a61e09649dc6cbae96e9fc1fb9293572880cce8f8d
MD5 3bb1f47b4c33d494052c57c8aa425263
BLAKE2b-256 6a10710f5c2efaa4a5541e2236dc623e28336b6f059c8f380481ebbd0a11b758

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: pyocto-0.1.9-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 106.8 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.9-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 d132c1500a1bfd30255077f6abe767f7ab883850590acb8e63ceb9fd97125250
MD5 bb98557513e15ec01f0329221fdd6a45
BLAKE2b-256 7abfd6f4147ac4d7311ecc276cc07cc586f14a133e3fad1678f54c1037447fe2

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyocto-0.1.9-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 128.8 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.9-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 11800f8fed18bc486ca61f16566588de636e1bbb15858aeaf684b02abf4344b1
MD5 53cfdfdf5e7456d69e1ca3b7ca892ff8
BLAKE2b-256 bf2b1798cf2def8478f9b03786e6f00ce005e02eee7a20c20b90f695fce6ec7b

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp312-cp312-win32.whl.

File metadata

  • Download URL: pyocto-0.1.9-cp312-cp312-win32.whl
  • Upload date:
  • Size: 105.4 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.9-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 b798e8f765faa1b39b1ebd5da87bafb9e839ace2adf690c92e7161b04bbc65ed
MD5 23248864d99115d1b02d35f62448e942
BLAKE2b-256 fa112f40644c563a92be2b33079f42eb04d3cfcc3a1b131efb67f4d48e1bdf7a

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.9-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1a25667e7d0fe528f0c946b72802a770582a7385999df9d3fb6c8fd28bca4802
MD5 142f5c130bb4ebaeda2aca78c12115a6
BLAKE2b-256 ed88533c1e5a2a5a360533892bf79315c78a4ab1045c8a7e7ac6266305e30ed1

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.9-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8fffa1348d32c2544d39d2d874f7ce0154d51d25379e027008c58a8c7277b27e
MD5 19c97476da4a78edff2cdeb25bd80309
BLAKE2b-256 11a48d5d1ebfd0039e3ad37a662fcf8823221c3dab9dd9259f76fb1df9ad6caa

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 afb0a01b575e6f773651fdc69b0b510b428d86869ef3e48c6fa4f52fb60dea24
MD5 15a800e32644452aee0aaa4aa97ca872
BLAKE2b-256 1e662d0493144a0d72e502ac91ebcc59b543eeda79d1b4b48b838fc762551ba5

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.9-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7dca2ddb21ae067fad6dbc8cacb79f62da6f633a1d257551b93a41ef15e0e704
MD5 f5f6733955086afc6360b45088648bb5
BLAKE2b-256 4986cfba421ff4e03c5da63e4eec16632d9c510820d655ad71e889171661b66f

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp312-cp312-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for pyocto-0.1.9-cp312-cp312-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 081218f5287482e48997116cfac8bf70d6d91eaef797d908ecc38c5dde9aaef9
MD5 5979c4d574f6e11c8e39c09114adc4aa
BLAKE2b-256 3f8f203211b2521fcec28832298f0d71edbd252e82cf8ee00ad888eedae94993

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: pyocto-0.1.9-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 107.3 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.9-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 692bc2393dde070ad9595a6e8c7a7798164ff80411c5a95e1df204557f06df3e
MD5 c78ff9399ae88e64b858c8199371c13d
BLAKE2b-256 a833461179a45a56cfc447fdd0c09569b323ab4b236036c5aa43300c9d798548

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyocto-0.1.9-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 129.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.9-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 59a88539e78cee88d15a20c4d422cbf2066f60ea71ad0dd78f1446e3af8f6775
MD5 32f6e81200ee3f688c4f7815106f77b7
BLAKE2b-256 a50848f80c2ee646102e79fe4e0d3f508b3fa9c04adf510a44735ca97666250a

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp311-cp311-win32.whl.

File metadata

  • Download URL: pyocto-0.1.9-cp311-cp311-win32.whl
  • Upload date:
  • Size: 105.3 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.9-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 b6144f205bb1fb01a9ea7fbfc42e8a46267428825d158f8765fa8675bae1c21c
MD5 d70df2fb94f5d2d23448c4064ac8ca81
BLAKE2b-256 bf5a279c91adadf3fd8f4d6c512e6a168b7cd8f783c3a5e7fd7fa4bebe747356

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.9-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 bd22a8afdf36066280e4892be1307ba8e94ade78fff87242b019237a864b254c
MD5 3169b9a7ff5018fcfc99bd754e316c34
BLAKE2b-256 953370a96919cc2a5f0742de2ddd7f16d53d0cb1590ec526fe501a664f868589

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.9-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 db434afbd3f2cf76c35e59d5ffdcb7f51db229c5ff35df01af191fceed457119
MD5 088cdcb2d71f668d6532b9e64a943e84
BLAKE2b-256 1bc834376452234138e70fd73d8726b81afd1c76a736055ba7a0c15c8ad8506d

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b7edeca80ce6ddc2bc300bd3a7fc09bcfcc144a29fe9a70945957570517d6496
MD5 5ee21e9407c92912101d25f1ad574397
BLAKE2b-256 98ea15d82e15096a0aadabc22cd1d8334c81728a60c38a639436e00d9f108b66

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.9-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fe85be1de9e1779b5b8df910e803cbe06d3deb5402e4249e19a13dc4d9aa1b31
MD5 7f4dd3b352e448895c2027ba3bd8e094
BLAKE2b-256 61a7acca4df6d2ece57ae473d79b158115162c0c4a13682052fb9d9e937298ea

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp311-cp311-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for pyocto-0.1.9-cp311-cp311-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 067940c79a14e9a2a3b9101d210003e3bef8851db5115be1aa7c8aa091854e16
MD5 f98a39eb5790e5d2e2a9aa250cd34bd6
BLAKE2b-256 865ea81f8bdb3a1061fa54ff9d093d1e392bc041bd90c3b1c107519a40d6487e

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: pyocto-0.1.9-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 106.6 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.9-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 14a4994a37f7a9bf777f8ff533f9913bfc2ff46c3ca965c588b3066bb45295af
MD5 372e9d0b5063dcdc17cf1ee26ce74125
BLAKE2b-256 cdbf550923b0f9c29e0e3b202f68976ed4c645b378ed184d14b17d587f9ef92d

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyocto-0.1.9-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 128.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.9-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2b13c01cd25b387e2221ccef469d4c376064bde5528c2f257fcabe2d62a0e2b4
MD5 4ae2616b12da565db5eb02fb408dca43
BLAKE2b-256 f9f2c08dc3139b1b01f6f03917a13033631f113533afee024a9577c57f279d39

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyocto-0.1.9-cp310-cp310-win32.whl
  • Upload date:
  • Size: 104.9 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.9-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 6f986f7bccb4113cde1261ed9d488774b4f591f588d650a2e897c34e4fa0d8d7
MD5 22e0ef2284edc95d824a0acde36261a3
BLAKE2b-256 31c521ff8d615217f431fe8b04bfc1b46c7cb01589714c81b4df1e39fb1a847f

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.9-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 40bae0d63dbdc7b06d87ed754eeb93688f89a5f994a96ce840e20937c2b3fed2
MD5 44d5ff2321dd69e01b8cbf7ebbeae629
BLAKE2b-256 2b2be07923090c4ab079da56f1f86eeb5510ae2549ce3a013a22e519ac4140d0

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.9-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2f825760ad86125b0e8c377371ff0f206255af235fa8d2b3d586475c41a6cfeb
MD5 95a94e68bc30ec4c2367060d62f89d87
BLAKE2b-256 89fc9b6eaf0ddbb9f95b0bbfc1ea46d10fec948053112af228479a88d1799e0d

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a80c1b2b6b2b57daaf25868f41eb12ccff22bf75a9f37261fd2b49de85d617fc
MD5 27b345601907001b43faedad311fae08
BLAKE2b-256 eb9b5d2cdbbe75a601477083734beac16b04162412fa84be59ee38790b42bf4e

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.9-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a7fd176e5dddbd1fc08ec3798228f0ca43651faf437db27261ea20120b602f52
MD5 5735f7023bd36299f021c88fd1b89dfb
BLAKE2b-256 169d538314a7b1b87dd4f3b3bdcbae9e0850c75169ddf78a61d89dce2e48beba

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp310-cp310-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for pyocto-0.1.9-cp310-cp310-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 f58a29311b6489560e7abdaec1006a86f26afef08e23a08264ba0a5a2668bf16
MD5 020ca076ec066708a08ac9798d70f1c9
BLAKE2b-256 15849127b1a18dd3224078d8a48d6dded8f81009f473098ca30fca868a79ddf2

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: pyocto-0.1.9-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 106.8 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.9-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 9b69d63885e3644da8ff5e6398aad66c0ddbb33708e6e7f200bbc6f8e53e61fa
MD5 c6515274a0e028d6348ad3839981c5cc
BLAKE2b-256 0b517b738b0e9f3ce07352e1e013ac24a709a4ae8517c19742e8a5f453769e65

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyocto-0.1.9-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 128.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.9-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b6a2db771978967f892841c00fc8a4a7c0feb42644aa4617e653d0722f00e5fb
MD5 9e2f6a803ea0aea98ff914e06bf51664
BLAKE2b-256 857d5e8e2560d899bf9c8ada04bcfc39c03fe457d0d011e50665c7b5a4a84136

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyocto-0.1.9-cp39-cp39-win32.whl
  • Upload date:
  • Size: 105.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.9-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 8d8e9406d8e0c991caf3b6447b1b1218360ed909cc9740da8f9ade6672bd4617
MD5 255dab8c170b38679147906a5223120d
BLAKE2b-256 ef1f3d6fbdc2986b4dfd93874e85f8c117e05e45bc0d0013902d88b678e18b03

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.9-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1de9603dac01aa7c625344900faf9e69d6291ebf66c362e9398b576ec8d82e2a
MD5 1bd3181f545a92fe8cc5a4e55e7746a4
BLAKE2b-256 18e1275c15f31612d567ce2685b52e1b14302b1b0e20e947f13289715cfd2069

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

  • Download URL: pyocto-0.1.9-cp39-cp39-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 749.5 kB
  • Tags: CPython 3.9, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.9-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2eb01144b48a12a8b2998b8bd5858b791737793163f8dcad51d8e96ec92495af
MD5 feb49aea0fd87f5b66964156db5f97b0
BLAKE2b-256 79d64ecc83cb47ace46846f08d3c62f557d91572231b3fed11ab13b79de3b696

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 95150c0b5fe318cdf9bb26d453a3ba425c1503568a76ba5ac27a0e617ac61efc
MD5 ab75d04a5901017db4ea5587c37f0aae
BLAKE2b-256 085609f43fd592198fc6c191c07abb6683c4ee4836903905e9023459b811478f

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.9-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b3cbe88b733063f9a6fb3156c8cfa4e899af6d0d3542d441b256e96428b80e64
MD5 752459acf00edfd6eff7b940002fc022
BLAKE2b-256 c3006af0f8f5671059840dc1203f8407eae5a627348705e515860201abfc5f3f

See more details on using hashes here.

File details

Details for the file pyocto-0.1.9-cp39-cp39-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for pyocto-0.1.9-cp39-cp39-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 c05837c2600b5a2a7533a666f043146a3bc6f3d95e5db2f36cd951e955ff4bb6
MD5 51a573a8decc790e7adf2b5b331b42b7
BLAKE2b-256 47690732104eb253bfb31e90dd2ac346ff3d3444138ebfa2731c5cf5d994d490

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page