Skip to main content

A high-throughput seismic phase associator

Project description

PyPI - License GitHub Workflow Status Read the Docs PyPI Python 3.9 DOI

PyOcto is a high-throughput seismic phase associator. The best way to get started with PyOcto is through our interactive examples:

Examples
Basics Open In Colab
Velocity models Open In Colab
Interfaces Open In Colab

If you're looking for further guidance, for example, a guide on how to set the associator parameters, check out the PyOcto documentation.

Installation

The easiest way to install PyOcto is through pip:

pip install pyocto

There are prebuilt wheels available for Linux, Mac OS, and Windows. In case you want to use 1D velocity models, you will need to install the optional dependency pyrocko. pyrocko is available through the standard channels, such as pip or conda.

git clone https://github.com/yetinam/pyocto.git
cd pyocto
git submodule update --init
pip install .[test]

To verify your installation is working, use pytest tests/.

Warning: PyOcto uses POSIX threads for threading. As these are not available on Windows, the Windows version is single-threaded. Therefore, we do not recommend running larger computations on Windows.

References

If you're using PyOcto in your work, please cite:

Münchmeyer, J. (2024). PyOcto: A high-throughput seismic phase associator. Seismica. [Paper].

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyocto-0.1.8.tar.gz (1.2 MB view details)

Uploaded Source

Built Distributions

pyocto-0.1.8-pp310-pypy310_pp73-win_amd64.whl (129.8 kB view details)

Uploaded PyPyWindows x86-64

pyocto-0.1.8-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (166.1 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

pyocto-0.1.8-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (176.7 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ i686

pyocto-0.1.8-pp39-pypy39_pp73-win_amd64.whl (129.8 kB view details)

Uploaded PyPyWindows x86-64

pyocto-0.1.8-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (166.2 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

pyocto-0.1.8-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (176.5 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ i686

pyocto-0.1.8-cp312-cp312-win_arm64.whl (106.3 kB view details)

Uploaded CPython 3.12Windows ARM64

pyocto-0.1.8-cp312-cp312-win_amd64.whl (130.5 kB view details)

Uploaded CPython 3.12Windows x86-64

pyocto-0.1.8-cp312-cp312-win32.whl (106.8 kB view details)

Uploaded CPython 3.12Windows x86

pyocto-0.1.8-cp312-cp312-musllinux_1_1_x86_64.whl (688.4 kB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

pyocto-0.1.8-cp312-cp312-musllinux_1_1_i686.whl (751.1 kB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ i686

pyocto-0.1.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (166.3 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

pyocto-0.1.8-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (177.4 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686

pyocto-0.1.8-cp312-cp312-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl (251.6 kB view details)

Uploaded CPython 3.12macOS 10.9+ universal2 (ARM64, x86-64)macOS 10.9+ x86-64macOS 11.0+ ARM64macOS 11.0+ universal2 (ARM64, x86-64)

pyocto-0.1.8-cp311-cp311-win_arm64.whl (106.8 kB view details)

Uploaded CPython 3.11Windows ARM64

pyocto-0.1.8-cp311-cp311-win_amd64.whl (130.8 kB view details)

Uploaded CPython 3.11Windows x86-64

pyocto-0.1.8-cp311-cp311-win32.whl (106.7 kB view details)

Uploaded CPython 3.11Windows x86

pyocto-0.1.8-cp311-cp311-musllinux_1_1_x86_64.whl (689.4 kB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

pyocto-0.1.8-cp311-cp311-musllinux_1_1_i686.whl (750.6 kB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ i686

pyocto-0.1.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (167.4 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

pyocto-0.1.8-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (177.9 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686

pyocto-0.1.8-cp311-cp311-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl (251.2 kB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)macOS 10.9+ x86-64macOS 11.0+ ARM64macOS 11.0+ universal2 (ARM64, x86-64)

pyocto-0.1.8-cp310-cp310-win_arm64.whl (106.0 kB view details)

Uploaded CPython 3.10Windows ARM64

pyocto-0.1.8-cp310-cp310-win_amd64.whl (130.0 kB view details)

Uploaded CPython 3.10Windows x86-64

pyocto-0.1.8-cp310-cp310-win32.whl (106.2 kB view details)

Uploaded CPython 3.10Windows x86

pyocto-0.1.8-cp310-cp310-musllinux_1_1_x86_64.whl (688.3 kB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

pyocto-0.1.8-cp310-cp310-musllinux_1_1_i686.whl (749.4 kB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ i686

pyocto-0.1.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (165.7 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

pyocto-0.1.8-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (176.7 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686

pyocto-0.1.8-cp310-cp310-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl (248.4 kB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)macOS 10.9+ x86-64macOS 11.0+ ARM64macOS 11.0+ universal2 (ARM64, x86-64)

pyocto-0.1.8-cp39-cp39-win_arm64.whl (106.3 kB view details)

Uploaded CPython 3.9Windows ARM64

pyocto-0.1.8-cp39-cp39-win_amd64.whl (130.0 kB view details)

Uploaded CPython 3.9Windows x86-64

pyocto-0.1.8-cp39-cp39-win32.whl (106.3 kB view details)

Uploaded CPython 3.9Windows x86

pyocto-0.1.8-cp39-cp39-musllinux_1_1_x86_64.whl (688.6 kB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

pyocto-0.1.8-cp39-cp39-musllinux_1_1_i686.whl (749.5 kB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ i686

pyocto-0.1.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (166.1 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

pyocto-0.1.8-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (177.1 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686

pyocto-0.1.8-cp39-cp39-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl (248.5 kB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)macOS 10.9+ x86-64macOS 11.0+ ARM64macOS 11.0+ universal2 (ARM64, x86-64)

File details

Details for the file pyocto-0.1.8.tar.gz.

File metadata

  • Download URL: pyocto-0.1.8.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.8.tar.gz
Algorithm Hash digest
SHA256 1d997e6eddffb86affc7aa9639ef591bb3c9d9369177210cfbe887eeaa801fd0
MD5 ef590ffc519d80dffd288b95f24b267a
BLAKE2b-256 f2e16a83f938f14a2cf1b942964132938feaffdad8154cf2af9e1391942a7f68

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.8-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 aa0dcd2d36eefa92095ad2854b79d763f71560cb8dc714e406d57688672904d1
MD5 f38841bbcc43a07cfe62520efd8d6889
BLAKE2b-256 4351d68867c7a857ca59d26e4897edd5722e34f7c30f4398cdc1a7bfc810dda2

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.8-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7be57b33cf638898e5461de0bf6e9f5fb11d2360cef5d5133380528b42f0eca7
MD5 1984cbc8af9927642c3ff6c92ebf6789
BLAKE2b-256 9c7c735ca39a7ca5ce13d26665b2faaf9015ed65d1f9107b4d6136a431e0d15f

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.8-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a85ae6ef84b6d0269ae89f53e8b88621892ddb3d69ddf4accfff427f7c92f3a7
MD5 44b883e15527fb28d2e006ddd8dfb671
BLAKE2b-256 1ff2a37097c4f4270dc498610b1134265176c93d8edc1da633bf03419a7714a7

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.8-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 5b9067f23e92a521487002b9a7492d5c7795cbc03811175c29f1a56ea82955e7
MD5 9a172b431027bcb1ccb4889776fc1f85
BLAKE2b-256 97120407a435d275498de5b6763fd658151ad3eae777cb41bceedadcca61d9d7

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.8-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a04c170868241fcb8a7b00d822d764ed51ac9c33000284f8ef7fe07565199acb
MD5 44cfab0a97a646164ead59fb1d0877f3
BLAKE2b-256 fd9bf5390ba21d334546f4bdb04f1c75a3e197af6decd6f748e1cd139dab6494

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.8-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d0337cc5bc38eccd9b5a412436eed939d8718c62f9cd7446664c6e252b628594
MD5 457b4c847b0b77980bdf7d0922d1520b
BLAKE2b-256 d3ab000f99e7c2d0ee628513b93f9172402b9f8bfbfd2f60bc87c29117e75e57

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: pyocto-0.1.8-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 106.3 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.8-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 25bade845e436eebe269882b3280eb94e826540175994b688129215f2b63cacd
MD5 df781f40070ae0449b1afff282a1cc2a
BLAKE2b-256 4af9cf2618c53d5bd60ffe48a94d5197779874d70846ad2b9f59e3ce79529df2

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyocto-0.1.8-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 130.5 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.8-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 3118dc66d31742c071d1104d15ed33de07b753fc16fd823c5842ef1dd0930af7
MD5 920d908cd4d143cda27c66dc8f0b06c3
BLAKE2b-256 5eae3b25bb18efa05fd629194ba5b7a7e77c6b0658a1346625c399ca5c509595

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp312-cp312-win32.whl.

File metadata

  • Download URL: pyocto-0.1.8-cp312-cp312-win32.whl
  • Upload date:
  • Size: 106.8 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.8-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 120229dc0c703d906b4f7033aa6a85934482c5500e0610f3b74f1428b9ca0dfc
MD5 55c7791646c805ae6b60984e0a87eab8
BLAKE2b-256 87875e661f81ae57aec81d6bdca0c795b301e28bbbe26a2dd3742ab23a428441

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.8-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 103e67b64b7647dbfc97913923307d44983702f1bd5f84ff1de2fb4fc5d2aa8e
MD5 7737ab488bb27c0fadf3a5770a9ab57c
BLAKE2b-256 793322fc2c3042b9cbd1332bbe2f72549dce27ee9a14c933a077a932b26fd600

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.8-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 1de8602ff52f48dd7a591328837a6890419fc48390c7266350e2e400c4b224e8
MD5 d20cd93d180f8b1559513c0f3f2886bf
BLAKE2b-256 fde815a2c0423d8982302640f6af523fc9df24e4fff169607262508c405d1f82

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb9b1c06e4cecd5af42f021466b58f1be3c80659010149e6aecda6afba0c3b3a
MD5 2a3cdf9d87e3d62cdfa9c9ab53f1611c
BLAKE2b-256 420a9b5c5fffb04efe6b30cdc6acc576570d8f59374b9a5211df86c3c6a5109c

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.8-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7c506c7d55cd76ae7409ddd0e78e0e4a12d7e5989c548313e48b4adc2b67cb29
MD5 42aaaa72dfce9233c46ddadd7e723eb5
BLAKE2b-256 99abd91a0e806e3380f41a3254e8ef3b468944250ce30ce6aaa3572982e50420

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp312-cp312-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for pyocto-0.1.8-cp312-cp312-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 cbd5fe1f77ce542b88b91f10790b33e8f438dd55d55dcb60e936c09c3b5dfd14
MD5 7eed4f5278ed3dab296fd1cb8b67987d
BLAKE2b-256 68846636727344289fdbb4531a90ffa0ee3da8ffaea9d02999af7f4919fca499

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: pyocto-0.1.8-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 106.8 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.8-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 70d96e7caa1a18df49c2196f22c51a4ede1df612ab9f05bc0386d1e6c1390181
MD5 b0bdde2eb4d30d084e9a36d7dc9b7b6d
BLAKE2b-256 174aebd6eeb8821b10a5287b8671f0fd1f4dba95c8a286822cb5223bd8c06cb4

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyocto-0.1.8-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 130.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.8-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2dd3873a5d64e36cc89bbc2984475762f3fb181e48067dc57dc1e96337c0f213
MD5 7881a618fde646544b87e79b7e182c0c
BLAKE2b-256 340f58b6a64697f0fe2e4d73de0a1d437369d56505656bf3c7d55899592d26cf

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp311-cp311-win32.whl.

File metadata

  • Download URL: pyocto-0.1.8-cp311-cp311-win32.whl
  • Upload date:
  • Size: 106.7 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.8-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 f3a2bb03ccef8ea05c45432c92b5769ac1a00aa884575e7f0f14d4edc14cd7bb
MD5 fa4f476aa31b682c49cc7edcf49f82c8
BLAKE2b-256 134936154501fdd41a01b7237f531a0666504e8984d8959dd7de48cd82f8e475

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.8-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 bd142460f06161f29e37940805d16f1542b5eebbece789479e4e7b49555460e1
MD5 5f13abc220183cee8891724d5f680e29
BLAKE2b-256 95b44d1e95ceb82898639b68b76cc35f94577fd1ddbfd289ab142c9a3c336946

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.8-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 acc0b1877f3dfd3fd73fb5a62c684abfe7e10e780099987532bb0c84b0b7e0f7
MD5 56c4d005f99eb016c6eddbe1b652536b
BLAKE2b-256 aec1684a33a6cf26cde33dfe656e3e8ffe01737cd6693c78932495874b7fc2ba

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 612e8cc4936fd86692b3e16fa5f76e00919fc7901f585dde08eea2471999e25b
MD5 dc674b3b3e7ca0b5f9cb7806e40676d7
BLAKE2b-256 6a59cabd9414abe3b0c76ffb55dce2c6eaefb007ead17f5589e67ef641f88906

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.8-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f666296201ea89cff0d6a9e0f1b86907a840169cd898a13f48330ea7afa46b08
MD5 854bd71a6ad67d9c7135cd7b006aaf57
BLAKE2b-256 e6e07432766cfde070497b187ce2e589b3df1ff51adb8614c1ba0ebe0905be70

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp311-cp311-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for pyocto-0.1.8-cp311-cp311-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 e733f0c072ff70c451fd98ae2b5b96655d2c49dd965968c0ba3ca7e57a60ac7b
MD5 9f91310358c0069898bc27debb824c39
BLAKE2b-256 6d9324644323572dbe80c1f19656d850dcf275be60af3258ee771fbe4d5ae58e

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: pyocto-0.1.8-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 106.0 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.8-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 3db8bf71b848e43d0ab8a229e9ef52f9fa3e1303a468a72ac922045b3d05e36f
MD5 8475d4f7bbff8bd4e647cfb9ab44d686
BLAKE2b-256 f3b4d1cfe6f3a1d89996047ce7fc08aad752d061905c621bfa8e67ade726ca81

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyocto-0.1.8-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 130.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.8-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4a9dc7be969442c6ebfab2d762f8725380f0f74de2e4ac46e655163a0997c4a8
MD5 87402a3991eaa50a665e1a21d6e1b718
BLAKE2b-256 8b580638059f58b0db4e0b3ec466300a2f9a85bcb5dddadebc6f28eb136c7a03

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyocto-0.1.8-cp310-cp310-win32.whl
  • Upload date:
  • Size: 106.2 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.8-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 e00a6e682dc35c12828ef177b8d5b6d7e07de46dba06c59038f38450f0112a42
MD5 5f8516638600c11ff77fe6f5bd3f70c2
BLAKE2b-256 5ce255e8f7fbd04adeef50fe070ccedf5a5d4a2dac9cd5df482b64a0e98a9bdc

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.8-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fe4aa572e0f2a04f4948fffca33ddf32a19863c0650dd4e7c14b5fc85c948ab8
MD5 8b90fe3fd0e55f4c7cc9c95973006812
BLAKE2b-256 f9a47cb1e3a5842b21917fef052f5e3cf012e1c23786bb3a54564a1cc6346dca

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.8-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 7ca291a7c996ff0c18e5c225854f0533689d9eb469f9141c4b275054a9c8d042
MD5 1bc9396d35cef7d6e0066dcdc5085b3c
BLAKE2b-256 ce1680423e8900c9ead0eb7ed579a97ccbde03fa3c5cc4b039fcd7825bacd892

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c9c03fbd45d440fa938c781fe3ee5671fe6e3152bcec21eab320dea00c3d48b2
MD5 69aca19e35f9609cd15e5d3496b228bb
BLAKE2b-256 78916479e4289f18c0c7c413e701ef4a93fc61724ceced39af8a6a52447bfbad

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.8-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a47a09265a10ceda2430de6613c93504c1065dfcaa72ff6aa65f9034e0915c05
MD5 a05e982ae91c727c5031a043c17793fd
BLAKE2b-256 f971c4980b26949e1c1a451b8f5d1c13852c0afcbb19af1cdfba102653bbb728

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp310-cp310-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for pyocto-0.1.8-cp310-cp310-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 f8b4f02c47e2b13f4b851bc4dc6bd7d0386285618693a31ffbc6183bb2b3e2fd
MD5 200cbfd57a5c397baf58f71c0cfa8852
BLAKE2b-256 0b28f0630d5e450fd3d8df6c45cc839e73b609998a9d69a0c4e1a273c68807c6

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: pyocto-0.1.8-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 106.3 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.8-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 c83488dfde6fdf1223e5b71cbca89955a4faf39fab851f73261eba4871db2c74
MD5 3dce15e101ec3cccac1a62b97f47fb95
BLAKE2b-256 a79438c4ea0a3fb5fbe0131d5e34df15952e2b2eb34c9049fcabe6386b691e9e

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyocto-0.1.8-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 130.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.8-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d9099ece1b4d3470e3a38123784e8bdec11a59502c664a161d2bda3b8be72084
MD5 216619c4a028278aabb20cf6bb3de31c
BLAKE2b-256 0d66e148f8d9dc2ca7e64b63b512a88b4fe9c018140e65dc63785e1199d4fa12

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyocto-0.1.8-cp39-cp39-win32.whl
  • Upload date:
  • Size: 106.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.8-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 5a03cd097a9f949d5690dc104553c1508de9b5a41473d13cdf5b07327ab08f32
MD5 8ed63a6fdad7e18fdb28fd1c5571a6ce
BLAKE2b-256 d2f696003da61dba555a968daea55ba33d3e62a08129ea72ed0ee2f797704b07

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.8-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cd8cfb933944a0122d9149d53b5401435755d3bace4b1646aefad9cabfd1b5be
MD5 0ea40d67ab5aac4921b3217a97980b9e
BLAKE2b-256 a430ab8df3955b72b39f122544c3bbe423b0f1aab3a139fdfd343958599dbd81

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

  • Download URL: pyocto-0.1.8-cp39-cp39-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 749.5 kB
  • Tags: CPython 3.9, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyocto-0.1.8-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b2573be0c8355261beb27209edb51492cebc7366a0f23d7ac3ea0f4d74b1d3bc
MD5 e04aab09c4b02741d8740a2ad1091ea9
BLAKE2b-256 2cc1362c56c15d58b992fed454724a3ce7e7f61764a7dcf9df516d79db196892

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyocto-0.1.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 30cb2a0361878055502194d7cf53120cb9f1b97a15bd2b46369e1fc4da60580c
MD5 be01a27c99d6710682d22b3c32e6380c
BLAKE2b-256 2b23edc8f2877550f82b9b595f86357ee00f8984583ed5fd64da59fb60142094

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyocto-0.1.8-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e2bf27d69e0d93f720a672038c1e01e9a00f4b2de5710274268aba9df9cc9b3e
MD5 af88735b7fbee66738b3f4873f335fae
BLAKE2b-256 b5d3590e4c8d4f7cf00d6f6fcb3e7d76dba0ae02fdf8e3f0118f90cfe2232078

See more details on using hashes here.

File details

Details for the file pyocto-0.1.8-cp39-cp39-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for pyocto-0.1.8-cp39-cp39-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 f07498fd9cd5abc1bd8a6eeb691a286df36ac910a6048e65c7c8af0e555556ea
MD5 896bc81c15bb96191cc1d19c64c532c7
BLAKE2b-256 a5b838c51f86ebd3d96a033f65c9022473d516fffd8868999059533a74eaac73

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page