Skip to main content

DB API Module for ODBC

Project description

A Python DB API 2 module for ODBC. This project provides an up-to-date, convenient interface to ODBC using native data types like datetime and decimal.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyodbc-4.0.13.tar.gz (194.6 kB view details)

Uploaded Source

Built Distributions

pyodbc-4.0.13-cp36-cp36m-win_amd64.whl (53.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

pyodbc-4.0.13-cp36-cp36m-win32.whl (46.5 kB view details)

Uploaded CPython 3.6m Windows x86

pyodbc-4.0.13-cp36-cp36m-macosx_10_6_intel.whl (105.8 kB view details)

Uploaded CPython 3.6m macOS 10.6+ intel

pyodbc-4.0.13-cp35-cp35m-win_amd64.whl (53.7 kB view details)

Uploaded CPython 3.5m Windows x86-64

pyodbc-4.0.13-cp35-cp35m-win32.whl (46.5 kB view details)

Uploaded CPython 3.5m Windows x86

pyodbc-4.0.13-cp35-cp35m-macosx_10_6_intel.whl (105.8 kB view details)

Uploaded CPython 3.5m macOS 10.6+ intel

pyodbc-4.0.13-cp34-cp34m-win_amd64.whl (49.2 kB view details)

Uploaded CPython 3.4m Windows x86-64

pyodbc-4.0.13-cp34-cp34m-win32.whl (44.2 kB view details)

Uploaded CPython 3.4m Windows x86

pyodbc-4.0.13-cp34-cp34m-macosx_10_6_intel.whl (105.8 kB view details)

Uploaded CPython 3.4m macOS 10.6+ intel

pyodbc-4.0.13-cp27-none-macosx_10_12_intel.whl (103.0 kB view details)

Uploaded CPython 2.7 macOS 10.12+ intel

pyodbc-4.0.13-cp27-cp27m-win_amd64.whl (50.1 kB view details)

Uploaded CPython 2.7m Windows x86-64

pyodbc-4.0.13-cp27-cp27m-win32.whl (45.0 kB view details)

Uploaded CPython 2.7m Windows x86

File details

Details for the file pyodbc-4.0.13.tar.gz.

File metadata

  • Download URL: pyodbc-4.0.13.tar.gz
  • Upload date:
  • Size: 194.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pyodbc-4.0.13.tar.gz
Algorithm Hash digest
SHA256 32a3967c508827a25621eb8e8fe1806152d1a2d608bfed5e268a38d6f05dcc0b
MD5 83dcbeae2d3ee6c7aa7303bc830c8d51
BLAKE2b-256 d51082a2fc4ab5270ca49e4a2d7b316c233d874c89824280249c3719938f7faf

See more details on using hashes here.

File details

Details for the file pyodbc-4.0.13-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.13-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 63e4bbda862c1cff93957301cf38bb44503d49e30687bc77b403bb5bfb51e3cc
MD5 5c7c58b663ab43baffc2fc7ba2ad4e66
BLAKE2b-256 57a58e6ad02bc851a35c832e7e2503b168031381b2b821e5424419c7ac18857b

See more details on using hashes here.

File details

Details for the file pyodbc-4.0.13-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.13-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 8476a207d63a0d4c628459bfbba864e67939d90e8e2f9a7414e522178b1e1676
MD5 18514e89757d9e84f6158a344ce80eff
BLAKE2b-256 32ed811469b0b5a1d12a3b6d6eed209f195bcd523fa88efdce9b02825588fea5

See more details on using hashes here.

File details

Details for the file pyodbc-4.0.13-cp36-cp36m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.13-cp36-cp36m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 dd7c1095dd23aef2f025e425a2fe490adb1371fac2c980cc69ae1426060100f0
MD5 b98eaecb1faf469e8f74c77f39b874cd
BLAKE2b-256 4e8bb5802d1fd78398dbb65d8e95a730acad2734d663f36d454bbf03b8474c29

See more details on using hashes here.

File details

Details for the file pyodbc-4.0.13-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.13-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 9c67b39f29a4714a09925688216d496331e51e722f0d8260b24d0875cddb5f29
MD5 73abba41363513f263fa368898d71277
BLAKE2b-256 1114fbf6e4ed64cd3b76a0e06672b2a71de447061c40ff20d445f75126f130f7

See more details on using hashes here.

File details

Details for the file pyodbc-4.0.13-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.13-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 174580250fb76d75b214f1d47c0a9bdc7196f421ba44ca62226698e0ccd72fa9
MD5 50460ee3ede55378ec63117ec06d8d3d
BLAKE2b-256 385ace13461fa9cc4c052354ffabafb45bcb177cb4c7b5e3c2f6e3fc73a45920

See more details on using hashes here.

File details

Details for the file pyodbc-4.0.13-cp35-cp35m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.13-cp35-cp35m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 dd9cc044aa72c1e9939733ac7ed5e6df576b1cf0e52620b7f20566b26a729180
MD5 27a4871440a9ade7e441a45ae37fd4f4
BLAKE2b-256 0abc918726e46adfa245f7d80be8308cab2a1f17ce81e9d98c4172c9fb81e357

See more details on using hashes here.

File details

Details for the file pyodbc-4.0.13-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.13-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 3c0876e9246b217d62dbd6f3aa8ee74b0253a84f5fd79cdc8abb643e3714064b
MD5 fe7029f54b9313a9252c13d1967e04c4
BLAKE2b-256 5d43e6cf7cad1baf7c3074b5d05ae1c3f8d406718e4d5ab81afd78fec76d9a2a

See more details on using hashes here.

File details

Details for the file pyodbc-4.0.13-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.13-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 46145fca47959704eb0eb6085a08c76929b29abe4c53b01664ae213c711c8748
MD5 b9e99daedcb80d5a41324cd6d46c6f70
BLAKE2b-256 262c16f71d1e784863bf667ebe2553e9c7fd252962755137821707f68d212c8f

See more details on using hashes here.

File details

Details for the file pyodbc-4.0.13-cp34-cp34m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.13-cp34-cp34m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 67e831c5148bd411d9bcfbbadc4a7c2a0f3f87f1987e3ff8dee6ce56a48aadba
MD5 df0b2d820cb3c3d383b594af56750dc7
BLAKE2b-256 4715ad2b45fa12385793b50d1f877d71cd40fc5f0bde3136d052da15d7f7a1f0

See more details on using hashes here.

File details

Details for the file pyodbc-4.0.13-cp27-none-macosx_10_12_intel.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.13-cp27-none-macosx_10_12_intel.whl
Algorithm Hash digest
SHA256 e50af893c8aefbbb9437951d2b9b7c14f9d9be504f907805ba83388f0397a537
MD5 9889de03f1157012e2e751d9e1db8169
BLAKE2b-256 c630344999296d3e8b4d8b40a5a930d63b1685b71855a59a46982d802aa9ab79

See more details on using hashes here.

File details

Details for the file pyodbc-4.0.13-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.13-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 05da16d4f6464498d78a4618db4d888a8528f0a03a9b1a17d62a2d0e84c424a4
MD5 581602433061f9d5c8e1b627009ea979
BLAKE2b-256 581e1cb95a38206312966289a59764ef14a2d862ff128c15113cf4c23005925b

See more details on using hashes here.

File details

Details for the file pyodbc-4.0.13-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.13-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 26b719271c8676578d5732f517ef56438669f90fbb6a33f16b0825b8311156af
MD5 f6bc754f6f6ba61335ca228b317d2345
BLAKE2b-256 ac246b87854ef031c19a0bba6bf4f0a747c45a64704c2b6ff53d4fb686aee423

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page