Skip to main content

DB API Module for ODBC

Project description

pyodbc

Windows Status Ubuntu build PyPI

pyodbc is an open source Python module that makes accessing ODBC databases simple. It implements the DB API 2.0 specification but is packed with even more Pythonic convenience.

The easiest way to install is to use pip:

pip install pyodbc

If you are using Mac, you should be using Homebrew for installing pyodbc:

brew install unixodbc
pip install pyodbc

Precompiled binary wheels are provided for most Python versions on Windows and macOS. On other operating systems this will build from source. Note, pyodbc contains C++ extensions so you will need a suitable C++ compiler on your computer to install pyodbc, for all operating systems. See the docs for details.

Documentation

Release Notes

IMPORTANT: Python 2.7 support is being ended. The pyodbc 4.x versions will be the last to support Python 2.7. The pyodbc 5.x versions will only support Python 3.7 and above.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyodbc-4.0.35.tar.gz (273.3 kB view details)

Uploaded Source

Built Distributions

pyodbc-4.0.35-cp311-cp311-win_amd64.whl (66.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyodbc-4.0.35-cp311-cp311-win32.whl (59.0 kB view details)

Uploaded CPython 3.11 Windows x86

pyodbc-4.0.35-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (344.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyodbc-4.0.35-cp311-cp311-macosx_11_0_arm64.whl (68.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyodbc-4.0.35-cp311-cp311-macosx_10_9_x86_64.whl (69.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyodbc-4.0.35-cp310-cp310-win_amd64.whl (66.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyodbc-4.0.35-cp310-cp310-win32.whl (59.1 kB view details)

Uploaded CPython 3.10 Windows x86

pyodbc-4.0.35-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (332.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyodbc-4.0.35-cp310-cp310-macosx_11_0_arm64.whl (68.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyodbc-4.0.35-cp310-cp310-macosx_10_9_x86_64.whl (68.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyodbc-4.0.35-cp39-cp39-win_amd64.whl (66.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyodbc-4.0.35-cp39-cp39-win32.whl (59.1 kB view details)

Uploaded CPython 3.9 Windows x86

pyodbc-4.0.35-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (329.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyodbc-4.0.35-cp39-cp39-macosx_11_0_arm64.whl (68.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyodbc-4.0.35-cp39-cp39-macosx_10_9_x86_64.whl (68.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyodbc-4.0.35-cp38-cp38-win_amd64.whl (66.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyodbc-4.0.35-cp38-cp38-win32.whl (59.1 kB view details)

Uploaded CPython 3.8 Windows x86

pyodbc-4.0.35-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (333.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyodbc-4.0.35-cp38-cp38-macosx_11_0_arm64.whl (68.4 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyodbc-4.0.35-cp38-cp38-macosx_10_9_x86_64.whl (68.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyodbc-4.0.35-cp37-cp37m-win_amd64.whl (67.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyodbc-4.0.35-cp37-cp37m-win32.whl (60.3 kB view details)

Uploaded CPython 3.7m Windows x86

pyodbc-4.0.35-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (324.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyodbc-4.0.35-cp37-cp37m-macosx_10_9_x86_64.whl (68.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyodbc-4.0.35-cp36-cp36m-win_amd64.whl (75.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

pyodbc-4.0.35-cp36-cp36m-win32.whl (66.5 kB view details)

Uploaded CPython 3.6m Windows x86

pyodbc-4.0.35-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (319.0 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pyodbc-4.0.35-cp36-cp36m-macosx_10_9_x86_64.whl (68.6 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

pyodbc-4.0.35-cp27-cp27m-win_amd64.whl (66.8 kB view details)

Uploaded CPython 2.7m Windows x86-64

pyodbc-4.0.35-cp27-cp27m-win32.whl (59.5 kB view details)

Uploaded CPython 2.7m Windows x86

File details

Details for the file pyodbc-4.0.35.tar.gz.

File metadata

  • Download URL: pyodbc-4.0.35.tar.gz
  • Upload date:
  • Size: 273.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.6

File hashes

Hashes for pyodbc-4.0.35.tar.gz
Algorithm Hash digest
SHA256 92b9af48e8b928455bc8b94bf3da05751faec0932a11eee237c189c6d439e5c8
MD5 92f3d737fbcec96a1844b446996c73af
BLAKE2b-256 2c931468581e505e4e6611064ca9d0cebb93b3080133e4363054fdd658e5fff3

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyodbc-4.0.35-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 66.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.6

File hashes

Hashes for pyodbc-4.0.35-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 df74d692e3002208ef16994adcd0ba0a5f579ec8621a2aa2866195defcecfdb1
MD5 3e9327abc25b73268aa0d38b602b2d25
BLAKE2b-256 53861b32902c050471ed1275233eeec38a736a442dde28339611173d0ff91d59

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp311-cp311-win32.whl.

File metadata

  • Download URL: pyodbc-4.0.35-cp311-cp311-win32.whl
  • Upload date:
  • Size: 59.0 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.6

File hashes

Hashes for pyodbc-4.0.35-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 71aa000e8ac925ccfabb2cdb9b2ec3247de243305d12bf5b24fcdd248ffd07e3
MD5 4b01bfa022977426a3ca34f6fcd47ee3
BLAKE2b-256 900c5b3593490e16fbf00e90a43100b09465cc90228ed3b2ac26cdb40374d9c0

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.35-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 95c1e3f2747af0957de17192811f06525a8e9c3e6491b4698b3f34d626333be7
MD5 03028238ede3302480b2d36694bc6764
BLAKE2b-256 80cc5d602c4326af9993f891eab1f25bd967f89785efc08a773353564cab2f01

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.35-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8388c222a64fc8b0039be8e2663212e6a2915c842d5fd34f32126ee392b6c48e
MD5 b8b8fe8cb17869300aeb0ba0435da0af
BLAKE2b-256 89fe4293b0c62a6ba7fc1fb33a9298b0671a308bf126ab8ea70dae892b46a69a

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.35-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ea33e115ea6b3f5113a647c4a121247d32d8f338c3d9e1937b50222e52ad4360
MD5 d858feb81a6b53f257ef45e84cc042ff
BLAKE2b-256 3652b22a512324af2559034b603a6fd9511e217ca9e8f8c9ddec1dbc6ad5b5bd

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyodbc-4.0.35-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 66.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.6

File hashes

Hashes for pyodbc-4.0.35-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c7f8e34b18474bc347bd3623408c8ecb405cf2fa71cb72e42b9657f4ffbc146a
MD5 f1e01c50ad823e316baeb10fa0c17b51
BLAKE2b-256 b426f5ac20e7cc5de1c2d76c2f154c97e6057cc0524e42357d0bf47f9481e6cc

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyodbc-4.0.35-cp310-cp310-win32.whl
  • Upload date:
  • Size: 59.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.6

File hashes

Hashes for pyodbc-4.0.35-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 3bbd1819c7441766a086bf24d7803a7fd466f22dbbaffcab7acc01397961e552
MD5 2c28216c1e9ead5e4f3387dd7166ee74
BLAKE2b-256 12b683749a85cb17c1327ce91c69bf7c3a3c9e523c5e9f470cba613d375079c4

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.35-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fe0448f3d39253ed55d1b2b4bfa22f04413e8d0b09202a81d74e4cbe54de34a4
MD5 a26078d49bcf18f0cd420195e06db787
BLAKE2b-256 f966623ca40aac44be284e2688e2e989c8c26684edb950964aee29b98ab20f50

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.35-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cfe3c59fb151daef483533ab94b6b7367fa643137f94dac0a189e9779d691755
MD5 4ed409265e402d852a4b141eec8ed3e6
BLAKE2b-256 b163652b4fc304f52c3c51467a87ee214d76e0ba0c4f902e3b14d15cab5af32f

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.35-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e9a69b16fc59b74a9153c06e452a8093eae4a6ea542462811f517e7ccc5ff3e8
MD5 ea4c5514a7454e5a8d72cfff7321bb1b
BLAKE2b-256 1ebd6c3f8bcba4baa69941efeb8bbb11825698f21dac75b643263f83d1e6fede

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyodbc-4.0.35-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 66.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.6

File hashes

Hashes for pyodbc-4.0.35-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2a85203d2b6ab417f52600295294a5bb46a69fa383764959b57e8d843090fd43
MD5 1d0e2f08356bf974b0a8db499cea6e18
BLAKE2b-256 4a17a57a5ca7e450bfdd0f71400bd07d75738293ba6911d99bda0d3f9cf96e27

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyodbc-4.0.35-cp39-cp39-win32.whl
  • Upload date:
  • Size: 59.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.6

File hashes

Hashes for pyodbc-4.0.35-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 27340dff78694fee6e6629500ecbfbafc7694861e22256ff00af9865442d1bfe
MD5 542a305a163ad2755b7c8cc07ce70410
BLAKE2b-256 c852c96c03e2b1fa0ac61169558e6b77d4fd7473311c9e08591b84f440c0a4cd

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.35-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2b92c67e8255c8636af687f56361eaa420dd5d1b7bc883e2ff473d85a5e63e08
MD5 a1c5eaf2e5a8157b411592d2345d545a
BLAKE2b-256 206dbf6de124326d0b8a5683081ea14d715eff36103692057acdf3d892143ff0

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.35-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f068590bcce50b0120e88ec4f90d65f660e8d39052fad3733a40614623a987e4
MD5 320acef12c4bbfb18751d73f69a93aa5
BLAKE2b-256 7b9f1898801394d177c3a37be3e8e3910e5104f0c81402770321d805fdf35f13

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.35-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 389a8522806f439c430f5f339186e02b130f7b2de91c1366f44a21fb1229bb1b
MD5 f9ab1f5ea9a62e2779a330eaa6515769
BLAKE2b-256 38927ceef3ede99add84d297454819fc97c41614d79f77f630cbbc20c00085f3

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyodbc-4.0.35-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 66.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.6

File hashes

Hashes for pyodbc-4.0.35-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 dda0b6f9728941523e5b84b6a12bdcff420596451d2cfefcd7f21ace3bfde334
MD5 7cca924d8a646e54017d0d58720f96f1
BLAKE2b-256 0745e1d0df58331896c5a1ce14ed160e8eb9a11795149f6a60dc5a8a3a4841ce

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyodbc-4.0.35-cp38-cp38-win32.whl
  • Upload date:
  • Size: 59.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.6

File hashes

Hashes for pyodbc-4.0.35-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 cd885f28ba39debb1c8ace95a1fed551835a5a399778350094c71d0007e42a75
MD5 342a4bd782304a19c3ecad02be26c790
BLAKE2b-256 e4364e2711a9538664bfaf11fd2ad4949786365ac26a04e7a55dc567b882faea

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.35-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c9fb521b376d1b804ada98c6dd12a8b349c301060bfdc194a5045882f0b2887
MD5 25e8e9766c2558683c78949fbfe1f039
BLAKE2b-256 2fb5b01d86877733a551493ce5ee7438cce626a444b357600c2d0b5db8c4497d

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.35-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d94dd82d8ded92d3f7ed7d575dc53127e1bcc2bb7ada0ccac51eb4520cffc780
MD5 8cc4c0b2f656194a5bc14efc8e41ae07
BLAKE2b-256 cab086f3d36d4d523fe7b54240f179c5d62351f92bc2534d928ee42a18837aed

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.35-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 12b7a308e9e30d2da96a613ac12d46cd6f81a4791e5c5849e382e73eda1d23a2
MD5 cc98740cb796fd1975ee4abede7cff64
BLAKE2b-256 a5b7fd105918040b75fbca98077ff15cbe8e69a331a1cc01c0ba82ef1fac490d

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyodbc-4.0.35-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 67.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.6

File hashes

Hashes for pyodbc-4.0.35-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c24115c491585018faf88b1cafc73a91e177ff57c7d82d04abebe7fb52cae6b3
MD5 83e0ebf77806bbcdf451a5de6ab3eb92
BLAKE2b-256 78ac55e7201f75a6af78ac8182bd9d1b35b41e2b8d2b148536f5ab27f2b5f5fd

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyodbc-4.0.35-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 60.3 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.6

File hashes

Hashes for pyodbc-4.0.35-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 b6f1d113d382fed53fd2f5692266c83409ecbdc6144a7e1abbed76050e9e5973
MD5 a37c8d80d4fe2bf2bd962285aa45377c
BLAKE2b-256 2faa2999a65600a7292bc121e0bd695407042242049762f7c6f295c275aac41f

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.35-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9918c50936e80cac300c9423c5936a2573543e2476749155616ef50685891145
MD5 14335e4ad6297fa0a721040af4452743
BLAKE2b-256 09727f60914e11d3469fbab2db5b0143b0604d9353b4c04f11ac33039b1c6cf1

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.35-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 38da788c66e9594174635ee37f494d0211fe2b5634aa2364be28317b1bbed16d
MD5 2e490b917b5996f250077c3a683a6a81
BLAKE2b-256 77027cbf994dfcacef8894b82734b0b67ca612475f2c674c40d263cca736dfdd

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyodbc-4.0.35-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 75.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.6

File hashes

Hashes for pyodbc-4.0.35-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 729b4454ede1384c4eb0608b552d59e933b377bc9f3d68a0b3d44f00c8c2ecab
MD5 a578399b324da3b1d7376e8f6f490951
BLAKE2b-256 e3075055651edc9f1c8872ba46313e727137e2dfe6e2bd9fe169ee429fa7e4ba

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp36-cp36m-win32.whl.

File metadata

  • Download URL: pyodbc-4.0.35-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 66.5 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.6

File hashes

Hashes for pyodbc-4.0.35-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 baf1d62959de66a664b4d63c4af00d09f107981be7a8961ce235a0fce386663b
MD5 04f059ab68d8cdb6e9275f7555419cf8
BLAKE2b-256 abe1eb5c41e4029fab9071f9fab86a9b8bff68af68bc958729fb1f02de2b27cf

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.35-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4b3d978619e68d0a6d6bc1f7749575b6de4ac4312aab0e889a18315b1bb06e9b
MD5 d0fa81e61ae5346d28bbe3d8f02ccfa7
BLAKE2b-256 caddc34ddf721474401ee552140ae609ac1087ec022d264861592abac8a7d149

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyodbc-4.0.35-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9632c19850bdeeb7ce2e9e38cf64df1688cd803e810bf18ab92fb0588956f7be
MD5 e7f37d61ee63d16a756aca6de2b71ff2
BLAKE2b-256 3cc4889a78993aaa628a145c79aeb303a8fec895aaef32fe58427398a1bcdfa7

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: pyodbc-4.0.35-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 66.8 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.6

File hashes

Hashes for pyodbc-4.0.35-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 f964f5f153569dae60b149b35aa7d54b46fb38c6bf928c346d928771b0a5f590
MD5 16fde18f524e8e535cd44d614b9f6f0a
BLAKE2b-256 81156dde31e8d2e884e9ad07e21704a5c8e38d86c7a363d644fced177cbb118e

See more details on using hashes here.

Provenance

File details

Details for the file pyodbc-4.0.35-cp27-cp27m-win32.whl.

File metadata

  • Download URL: pyodbc-4.0.35-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 59.5 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.6

File hashes

Hashes for pyodbc-4.0.35-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 c3ab48723c647bfd38dfa60dde3c1967e4e0e92a11c93ae30ec6665765e5a0f7
MD5 2d6b4f59c14b8c135d273312a271d27c
BLAKE2b-256 5cc61676b21d9a32f7e06320f9df702c7844b4ca615ca6f146620b0342f5c2bc

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page