Skip to main content

Operators and solvers for high-performance computing.

Project description

PyOperators

The PyOperators package defines operators and solvers for high-performance computing. These operators are multi-dimensional functions with optimised and controlled memory management. If linear, they behave like matrices with a sparse storage footprint.

Documentaion

https://pchanial.github.io/pyoperators

Installation

pip install pyoperators[fft,wavelets]

On some platforms, it might be more convenient to install pyfftw through Conda beforehand to use the FFTOperator:

conda install pyfftw

For MPI communication, an MPI library needs to be installed, for example on Ubuntu:

sudo apt install libopenmpi-dev
pip install pyoperators[fft,wavelets,mpi]

Getting started

To define an operator, one needs to define a direct function which will replace the usual matrix-vector operation:

>>> def f(x, out):
...     out[...] = 2 * x

Then, you can instantiate an Operator:

>>> A = pyoperators.Operator(direct=f, flags='symmetric')

An alternative way to define an operator is to define a subclass:

>>> from pyoperators import flags, Operator
... @flags.symmetric
... class MyOperator(Operator):
...     def direct(x, out):
...         out[...] = 2 * x
...
... A = MyOperator()

This operator does not have an explicit shape, it can handle inputs of any shape:

>>> A(np.ones(5))
array([ 2.,  2.,  2.,  2.,  2.])
>>> A(np.ones((2,3)))
array([[ 2.,  2.,  2.],
       [ 2.,  2.,  2.]])

By setting the symmetric flag, we ensure that A's transpose is A:

>>> A.T is A
True

For non-explicit shape operators, we get the corresponding dense matrix by specifying the input shape:

>>> A.todense(shapein=2)
array([[2, 0],
       [0, 2]])

Operators do not have to be linear. Many operators are already predefined, such as the DiagonalOperator, the FFTOperator or the nonlinear ClipOperator.

The previous A matrix could be defined more easily like this:

>>> from pyoperators import I
>>> A = 2 * I

where I is the identity operator with no explicit shape.

Operators can be combined together by addition, element-wise multiplication or composition. Note that the operator * stands for matrix multiplication if the two operators are linear, or for element-wise multiplication otherwise:

>>> from pyoperators import I, DiagonalOperator
>>> B = 2 * I + DiagonalOperator(range(3))
>>> B.todense()
array([[2, 0, 0],
       [0, 3, 0],
       [0, 0, 4]])

Algebraic rules can easily be attached to operators. They are used to simplify expressions to speed up their execution. The B Operator has been reduced to:

>>> B
DiagonalOperator(array([2, ..., 4], dtype=int64), broadcast='disabled', dtype=int64, shapein=3, shapeout=3)

Many simplifications are available. For instance:

>>> from pyoperators import Operator
>>> C = Operator(flags='idempotent,linear')
>>> C * C is C
True
>>> D = Operator(flags='involutary')
>>> D(D)
IdentityOperator()

Requirements

  • python 3.8

Optional requirements:

  • PyWavelets: wavelet transforms
  • pyfftw: Fast Fourier transforms
  • mpi4py: For MPI communication

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyoperators-0.16.2.tar.gz (210.8 kB view details)

Uploaded Source

Built Distributions

pyoperators-0.16.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (257.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyoperators-0.16.2-cp311-cp311-macosx_11_0_arm64.whl (154.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyoperators-0.16.2-cp311-cp311-macosx_10_9_x86_64.whl (159.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyoperators-0.16.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (253.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyoperators-0.16.2-cp310-cp310-macosx_11_0_arm64.whl (154.0 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyoperators-0.16.2-cp310-cp310-macosx_10_9_x86_64.whl (158.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyoperators-0.16.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (252.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyoperators-0.16.2-cp39-cp39-macosx_11_0_arm64.whl (153.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyoperators-0.16.2-cp39-cp39-macosx_10_9_x86_64.whl (157.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyoperators-0.16.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (255.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyoperators-0.16.2-cp38-cp38-macosx_11_0_arm64.whl (154.1 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyoperators-0.16.2-cp38-cp38-macosx_10_9_x86_64.whl (158.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyoperators-0.16.2.tar.gz.

File metadata

  • Download URL: pyoperators-0.16.2.tar.gz
  • Upload date:
  • Size: 210.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyoperators-0.16.2.tar.gz
Algorithm Hash digest
SHA256 091f541e138cbb933969c2040d972a65ba381e057072bd74772fceadf8515eff
MD5 755241e4d0afd8d0e51bab8b1f134486
BLAKE2b-256 135fc2f4b8680eeeb18bba6a16a1f446987a1013255e8e8aba57f3a93c5f5ae9

See more details on using hashes here.

File details

Details for the file pyoperators-0.16.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyoperators-0.16.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3c978bc03a1412ae98cd9c026d771b084992eee4df92831482a61b7ce2a3653d
MD5 58d32af6f286cfe42f206b862dd9fde2
BLAKE2b-256 8eb87c70dc89b601863a352fedaa2903d92af0b06699d48579d9f7d0de6f007d

See more details on using hashes here.

File details

Details for the file pyoperators-0.16.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyoperators-0.16.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ecff1094df49c6cf5906835dc6b91861c714947f5225c0a67e7769bf1113e514
MD5 9137612a202f3c35e14580c0378d6480
BLAKE2b-256 f6df16940943cc73de11343b09edb054baa23c692d04a590b6225a6ff973f551

See more details on using hashes here.

File details

Details for the file pyoperators-0.16.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyoperators-0.16.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 63fe48bdf44839c44ffb4507367e1dbd4736ee71856bb08019589636a5e5d850
MD5 cfa8752f8d4fa7f40f2e31afa34d3775
BLAKE2b-256 2219efd5e835787aa48f042b60d858be52fa3a59532226b6a51656250cb1af3c

See more details on using hashes here.

File details

Details for the file pyoperators-0.16.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyoperators-0.16.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e692354d64f003efe0319a9a5c8932071366e36366d88db7124c2cd5789e30ae
MD5 735bf6dc6da52deda54790cb4951b4c4
BLAKE2b-256 be6609382f27a0fd201364e48336399552cdec39d765c15c113a9a9c7fb923af

See more details on using hashes here.

File details

Details for the file pyoperators-0.16.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyoperators-0.16.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4a5b1cb2d8ea028ef07c47a7a5a5b55397dc4a6c7926e541fc27b0fd1e518fff
MD5 873770724dda207c9398e9c4d7c77d93
BLAKE2b-256 2efe499e7f6d0cc078805503fa9b42671ef78bf2484b6eb9f38473e9b72ac3d9

See more details on using hashes here.

File details

Details for the file pyoperators-0.16.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyoperators-0.16.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7768be7e79b4f7373eaade907baf29b091659f65b073a3dcb7bf3c7b9c8f3d27
MD5 0d14156a5c913eb86dd9c37b78e782c6
BLAKE2b-256 e74e1f1fdba75bdc463c8f5041cde6124d5c79896e3dfb636d2db294719a257c

See more details on using hashes here.

File details

Details for the file pyoperators-0.16.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyoperators-0.16.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7c79a3b0e4565f5edc766a32cbd8e1bb189f6bcab5e930bef5363c8da5cb1548
MD5 3993ab253ae2bd87cfaa72fb83ff2f89
BLAKE2b-256 573260016855848f4829eaea862c3588211c6976cccd4e3e383d1c79341443b7

See more details on using hashes here.

File details

Details for the file pyoperators-0.16.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyoperators-0.16.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4e0ecc07068bf5d6496b4a7087c044e949373fb4f3947d157a34c8aff5cfddf5
MD5 db4b3ba2961964687257a714485c1e89
BLAKE2b-256 fde731a43ebbe44c7ea23ab5191acdb8935d3905a4ff62ad7acf335f9a917111

See more details on using hashes here.

File details

Details for the file pyoperators-0.16.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyoperators-0.16.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b24c7ef984aebc32738f2c837d60bb5a69e10043f3b556f5f30bf632343e9f65
MD5 ef4168068aaabd6b6b76413cec30c161
BLAKE2b-256 8243cf93aeb8b3424d9890acb4441b6479eb9d1fa90a3fdd5c340d70f9b0ea0a

See more details on using hashes here.

File details

Details for the file pyoperators-0.16.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyoperators-0.16.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8b7462af25d328743fa9a897df2d2577f41b5a0113825edc2d10b2fff3771df6
MD5 b6bd8734305e434127a74b1bf8b04974
BLAKE2b-256 d24cfdb87724e3564d885db8571dbf15ed2871a6964ed62ca4a2807c712e9428

See more details on using hashes here.

File details

Details for the file pyoperators-0.16.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyoperators-0.16.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ee895fb3486d90f3354e22610226f4d916d5ffab0b6bf8dd92a6c277b8c8cadc
MD5 df7bb3145675ee55f4235eac94c0c914
BLAKE2b-256 28f909fbb6eaecce2ff63b93cb20efa6dd8c7d6316a26f28d8ffd753ee83cab9

See more details on using hashes here.

File details

Details for the file pyoperators-0.16.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyoperators-0.16.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 16fdec247bb12088a6eecea3610db9bd4e22fd81d0ebe056125cf487f09f1d29
MD5 4a96c29a20d78ac465b408149157ec24
BLAKE2b-256 3bf710f32b1020bcd076f7c92532f369345b0d9948521c533d1acdcb9bcf0763

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page