Skip to main content

Operators and solvers for high-performance computing.

Project description

=========
Pyoperators
=========

The pyoperators package defines operators and solvers for high-performance computing. These operators are multi-dimensional functions with optimised and controlled memory management. If linear, they behave like matrices with a sparse storage footprint.

Getting started
===============

To define an operator, one needs to define a direct function
which will replace the usual matrix-vector operation:

>>> def f(x, out):
... out[...] = 2 * x

Then, you can instantiate an ``Operator``:

>>> A = pyoperators.Operator(direct=f, flags='symmetric')

An alternative way to define an operator is to define a subclass:

>>> from pyoperators import decorators, Operator
... @decorators.symmetric
... class MyOperator(Operator):
... def direct(x, out):
... out[...] = 2 * x
...
... A = MyOperator()

This operator does not have an explicit shape, it can handle inputs of any shape:

>>> A(ones(5))
Info: Allocating (5,) float64 = 40 bytes in Operator.
array([ 2., 2., 2., 2., 2.])
>>> A(ones((2,3)))
Info: Allocating (2,3) float64 = 48 bytes in Operator.
array([[ 2., 2., 2.],
[ 2., 2., 2.]])

By setting the 'symmetric' flag, we ensure that A's transpose is A:

>>> A.T is A
True

To output a corresponding dense matrix, one needs to specify the input shape:

>>> A.todense(shapein=2)
array([[ 2., 0.],
[ 0., 2.]])

Operators do not have to be linear, but if they are not, they cannot be seen
as matrices. Some operators are already predefined, such as the
``IdentityOperator``, the ``DiagonalOperator`` or the nonlinear
``ClippingOperator``.

The previous ``A`` matrix could be defined more easily like this :

>>> A = 2 * pyoperators.I

where ``I`` is the identity operator with no explicit shape.

Operators can be combined together by addition, element-wise multiplication or composition (note that the ``*`` sign stands for composition):

>>> B = 2 * pyoperators.I + pyoperators.DiagonalOperator(arange(3))
>>> B.todense()
array([[ 2., 0., 0.],
[ 0., 3., 0.],
[ 0., 0., 4.]])

Algebraic rules are used to simplify an expression involving operators, so to speed up its execution:

>>> B
DiagonalOperator(array([ 2., 3., 4.]))
>>> C = pyoperators.Operator(flags='idempotent')
>>> C * C is C
True
>>> D = pyoperators.Operator(flags='involutary')
>>> D * D
IdentityOperator()


Requirements
============

List of requirements:

- python 2.6
- numpy >= 1.6
- scipy >= 0.9

Optional requirements:

- numexpr (>= 2.0 is better)
- PyWavelets : wavelet transforms

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyoperators-0.9.tar.gz (149.0 kB view details)

Uploaded Source

File details

Details for the file pyoperators-0.9.tar.gz.

File metadata

  • Download URL: pyoperators-0.9.tar.gz
  • Upload date:
  • Size: 149.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pyoperators-0.9.tar.gz
Algorithm Hash digest
SHA256 2ecc81bf1470d07857e77ccc1d7b3614c8b2b1ce0f6ca35f9edb36cdf85acd54
MD5 b052bb1fdd5b23a38c215b52a2f45888
BLAKE2b-256 34822b21c9e4dea20ffafc992a4f5aa5067a213432d5078c5a7b287796992ee7

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page