Skip to main content

Optical ray tracing simulation system

Project description

pyOpTools

pyOpTools is a set of packages that allow the simulation of optical systems by raytracing as well as some calculations involving wavefronts, currently under development. It is written in Python and Cython, and is being developed by the technological development group of Combustión Ingenieros S.A.S, and the applied optics group of the Universidad Nacional de Colombia.

At the moment the documentation is being created, you can find the work in progress here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyoptools-0.2.0.zip (10.7 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

pyoptools-0.2.0-cp310-cp310-win_amd64.whl (9.7 MB view details)

Uploaded CPython 3.10Windows x86-64

pyoptools-0.2.0-cp310-cp310-win32.whl (9.5 MB view details)

Uploaded CPython 3.10Windows x86

pyoptools-0.2.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

pyoptools-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

pyoptools-0.2.0-cp39-cp39-win_amd64.whl (9.7 MB view details)

Uploaded CPython 3.9Windows x86-64

pyoptools-0.2.0-cp39-cp39-win32.whl (9.6 MB view details)

Uploaded CPython 3.9Windows x86

pyoptools-0.2.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

pyoptools-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

pyoptools-0.2.0-cp38-cp38-win_amd64.whl (9.7 MB view details)

Uploaded CPython 3.8Windows x86-64

pyoptools-0.2.0-cp38-cp38-win32.whl (9.6 MB view details)

Uploaded CPython 3.8Windows x86

pyoptools-0.2.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

pyoptools-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

pyoptools-0.2.0-cp37-cp37m-win_amd64.whl (9.7 MB view details)

Uploaded CPython 3.7mWindows x86-64

pyoptools-0.2.0-cp37-cp37m-win32.whl (9.6 MB view details)

Uploaded CPython 3.7mWindows x86

pyoptools-0.2.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.6 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

pyoptools-0.2.0-cp37-cp37m-macosx_10_9_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file pyoptools-0.2.0.zip.

File metadata

  • Download URL: pyoptools-0.2.0.zip
  • Upload date:
  • Size: 10.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for pyoptools-0.2.0.zip
Algorithm Hash digest
SHA256 19243a7ec2ae0085e369c9339f60840214d0ff9b40cddfc629ed513ed5a3e30f
MD5 3e270c68d814787ff172de7c1158ce5a
BLAKE2b-256 43ca08edd7ad0553dc7beb77909d47f2e545393d7e6652f6e89270db18fd05e0

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyoptools-0.2.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 9.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for pyoptools-0.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a818173004bc67a28964a77d65261be5a05f6ee4e542df46e479705b0b14735f
MD5 139c4fbf82793c6627304e657b5bbe0b
BLAKE2b-256 984549ac02ede7852dc5e2a22d660414f2e2b75bba0fcfddca7dee27f757e21e

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyoptools-0.2.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for pyoptools-0.2.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 9e6173f01eebf991688176e0701f28b971ebcb8b22575711285b60110951e21d
MD5 8a5ebcaa7598572643243fdf8398ff72
BLAKE2b-256 181cc05ab6aabf46248fd78f9dfb540759565f380be8f7b9bef3e3002bdec0b5

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyoptools-0.2.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 79b88c1ced501f9a5282ea49027e9d0cbe92588c45ce9123d90582e22f1e47ee
MD5 96d33078abbc07aa83db85f2dc0ba231
BLAKE2b-256 3e94a4f8bf0c1ad5b2d74f0ad8f05f3d1fc0464a67250ad08a8cd7a6fe466217

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyoptools-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1bc12fdec45df55901012c5d2d301718a73e978e2da207ea57e4b96ff83356bc
MD5 e855934448caf3a0fffdd2bfc2319574
BLAKE2b-256 e79a6012e7a68d4c9701995b51fa314e3dc55a7cb4600b6e7161c3db7cdb70b2

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyoptools-0.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 9.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for pyoptools-0.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7d4ec9211af78bcc9db73d1fb3309d5da941a878cb046a75874383a32e7e2d35
MD5 e71c3496a7e74c4e8f81541cd53b18e0
BLAKE2b-256 aeb13e44a8d4fa0a21b4e85f61b8903c96630a67887c5af8e8e772d857d70b0c

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyoptools-0.2.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for pyoptools-0.2.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 27067677b6abea259d1554dd711f1df75f4a37b81a65086ffaaa504f305d8af9
MD5 0a8bbed26d7b22004efc2b4d9ec85b76
BLAKE2b-256 06e6f2c70d4a1781bbae3639e1fbb915c14c3af5c1eba5baf1a11d98119a6742

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyoptools-0.2.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 66ebf019d11623b01bedd9b0c4dbaefa4c7f14b5fb73198805d19ea16f2610d1
MD5 676701077aa1f4c41625ed1737a2ab4f
BLAKE2b-256 6f4278e35affa5a2376b7bed04223b5a566420fa825e0e994be8053c73539df6

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyoptools-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9dbf28c76c4a7d869a860dc26ea38fe5e493985559b60f76020d3523861c1ac2
MD5 82bb1c1157b717b95555c67264e9882e
BLAKE2b-256 6bf622ab71fb0543f761c672e1cc6c455a5bbd18945910f59b2479c91d2b5e94

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyoptools-0.2.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 9.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for pyoptools-0.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 85b6def5289d0bd10d0f94ca93734d9f6c9f3d3d818346afb5665086e4173104
MD5 6c3b951a39aed10ae17122d568cf75bf
BLAKE2b-256 278b418c2662ee4c063a65607820c9c7377e3f7545ae64da60e8ee702b4ece1a

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyoptools-0.2.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for pyoptools-0.2.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 baa30c78314b0cc6348f6be525622f277760fff2bda83de3eff4add1eb7832c0
MD5 9f96b3eee254fc29e81fcd6f39d73010
BLAKE2b-256 c5d7437203ffa9bc535619140abfd829056353774f06981e5bbf60d7fae56c7d

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyoptools-0.2.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1fedc047e58d28dbb2c0bde051bac2ce1fd8f1c04aa65a603f171afe416e0aa7
MD5 3e92a2293387b9c739b5bcefd529f9f6
BLAKE2b-256 53530b6c063ae0f362929d466f4494559d37238575c14df7a9e2641eddd624c0

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyoptools-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4460eccd503bd7b8103c60b9fda194f57e64e5ee31a97530093a7b672d398929
MD5 f59e17ce1aac26ead329ad2932fbf2c7
BLAKE2b-256 d31083a783c7639ce497be278fd838b190053af49a22ce91e51a5ac71f3f97a2

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyoptools-0.2.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 9.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for pyoptools-0.2.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 9950feefb094375b5774269d87b8d1b9e2fa46a78160ae162387f62a98ea76a3
MD5 1c437acf2bc9f88b181df60d81a43171
BLAKE2b-256 910aef9c74e98bb75ff416662d9e65a2947a77c5f56c669b2355510ef7a017fd

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyoptools-0.2.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for pyoptools-0.2.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 3af0efe0a8ef4eec51064169fbec3739064f718172ddf2199f4a973cf8cd57d3
MD5 40dadf4468705b7b7ab66b1322e86cb8
BLAKE2b-256 5f4768acf537d602104e68e910f4315a6eb51a634d57f53c4f52e1be6eb053dd

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyoptools-0.2.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 658cfa165cd57252405215c3f88e12050de7613d1541b97310e4de12c9e7b849
MD5 6b471f2391a8afc6b4f43b538fe1d96c
BLAKE2b-256 957c29b6d8f99d273cbb3586bad89cc7f4d7c03c23f6898d97be70073e7a36ce

See more details on using hashes here.

File details

Details for the file pyoptools-0.2.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyoptools-0.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4989f5502fbe713433323fced2e439d63b7a879c7761d77fbc0d28621efe8a62
MD5 500bccd5d5a807cecddd9d9091a4c498
BLAKE2b-256 35602ebb8c6a728d4c908cab85161243055ff7078ffe6a9256629bc808fcb32d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page