Python Implementation of Bertsimas's paper Optimal Classification Trees.
Project description
# pyoptree
Python Optimal Tree
### Install
#### First install pyoptree through pip
```
pip3 install pyoptree
```
#### Then install solver (IMPORTANT!)
The user needs to have **IBM Cplex** or **Gurobi** installed on their computer, and make sure that **the executable has been added to PATH environment variable** (i.e. command `cplex` or `gurobi` can be run on terminal).
### Example
```python
import pandas as pd
from pyoptree.optree import OptimalHyperTreeModel, OptimalTreeModel
data = pd.DataFrame({
"index": ['A', 'C', 'D', 'E', 'F'],
"x1": [1, 2, 2, 2, 3],
"x2": [1, 2, 1, 0, 1],
"y": [1, 1, -1, -1, -1]
})
test_data = pd.DataFrame({
"index": ['A', 'B', 'C', 'D', 'E', 'F', 'G'],
"x1": [1, 1, 2, 2, 2, 3, 3],
"x2": [1, 2, 2, 1, 0, 1, 0],
"y": [1, 1, 1, -1, -1, -1, -1]
})
model = OptimalHyperTreeModel(["x1", "x2"], "y", tree_depth=2, N_min=1, alpha=0.1, solver_name="cplex")
model.train(data)
print(model.predict(test_data))
```
### Todos
1. Use the solution from the previous depth tree as a "Warm Start" to speed up the time to solve the Mixed Integer Linear Programming (MILP); (Done √)
2. Use the solution from sklearn's CART to give a good initial solution (Done √);
Python Optimal Tree
### Install
#### First install pyoptree through pip
```
pip3 install pyoptree
```
#### Then install solver (IMPORTANT!)
The user needs to have **IBM Cplex** or **Gurobi** installed on their computer, and make sure that **the executable has been added to PATH environment variable** (i.e. command `cplex` or `gurobi` can be run on terminal).
### Example
```python
import pandas as pd
from pyoptree.optree import OptimalHyperTreeModel, OptimalTreeModel
data = pd.DataFrame({
"index": ['A', 'C', 'D', 'E', 'F'],
"x1": [1, 2, 2, 2, 3],
"x2": [1, 2, 1, 0, 1],
"y": [1, 1, -1, -1, -1]
})
test_data = pd.DataFrame({
"index": ['A', 'B', 'C', 'D', 'E', 'F', 'G'],
"x1": [1, 1, 2, 2, 2, 3, 3],
"x2": [1, 2, 2, 1, 0, 1, 0],
"y": [1, 1, 1, -1, -1, -1, -1]
})
model = OptimalHyperTreeModel(["x1", "x2"], "y", tree_depth=2, N_min=1, alpha=0.1, solver_name="cplex")
model.train(data)
print(model.predict(test_data))
```
### Todos
1. Use the solution from the previous depth tree as a "Warm Start" to speed up the time to solve the Mixed Integer Linear Programming (MILP); (Done √)
2. Use the solution from sklearn's CART to give a good initial solution (Done √);
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pyoptree-0.1.6.tar.gz
(10.0 kB
view details)
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file pyoptree-0.1.6.tar.gz.
File metadata
- Download URL: pyoptree-0.1.6.tar.gz
- Upload date:
- Size: 10.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.18.4 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
97a7542109c0a063b3b2b9ce53671c494629e6aa85499d43b0542ce2a1ba4a57
|
|
| MD5 |
d455e4e2060cc88a589a3c08f7876258
|
|
| BLAKE2b-256 |
134917566fd70701c5568d78543cea005540cf9a7037d4c13f1f9f4e686c3100
|
File details
Details for the file pyoptree-0.1.6-py2-none-any.whl.
File metadata
- Download URL: pyoptree-0.1.6-py2-none-any.whl
- Upload date:
- Size: 9.7 kB
- Tags: Python 2
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.18.4 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
432edf5678e459c8b181b99bfda88eb5917e5e58f6bb0e4f27796dbc6510348a
|
|
| MD5 |
134497a18a20f7f91621afde894761c2
|
|
| BLAKE2b-256 |
6962fbb9f38266f72aab8a13753bece8e96ff283c1276bef38d5da78e14893f6
|