Skip to main content

Quantum Entanglement in Python

Project description

Quantum Entanglement in Python

CircleCI GitHub release Documentation Status Updates Python 3 pypi download

Version

The releases of pyqentangle 2.x.x is incompatible with previous releases.

The releases of pyqentangle 3.x.x is incompatible with previous releases.

Since release 3.1.0, the support for Python 2.7 and 3.5 has been decomissioned.

Installation

This package can be installed using pip.

>>> pip install -U pyqentangle

To use it, enter

>>> import pyqentangle
>>> import numpy as np

Schmidt Decomposition for Discrete Bipartite States

We first express the bipartite state in terms of a tensor. For example, if the state is |01>+|10>, then express it as

>>> tensor = np.array([[0., np.sqrt(0.5)], [np.sqrt(0.5), 0.]])

To perform the Schmidt decompostion, just enter:

>>> pyqentangle.schmidt_decomposition(tensor)
[(0.7071067811865476, array([ 0., -1.]), array([-1., -0.])),
 (0.7071067811865476, array([-1.,  0.]), array([-0., -1.]))]

For each tuple in the returned list, the first element is the Schmidt coefficients, the second the component for first subsystem, and the third the component for the second subsystem.

Schmidt Decomposition for Continuous Bipartite States

We can perform Schmidt decomposition on continuous systems too. For example, define the following normalized wavefunction:

>>> fcn = lambda x1, x2: np.exp(-0.5 * (x1 + x2) ** 2) * np.exp(-(x1 - x2) ** 2) * np.sqrt(np.sqrt(8.) / np.pi)

Then perform the Schmidt decomposition,

>>> modes = pyqentangle.continuous_schmidt_decomposition(biwavefcn, -10., 10., -10., 10., keep=10)

where it describes the ranges of x1 and x2 respectively, and keep=10 specifies only top 10 Schmidt modes are kept. Then we can read the Schmidt coefficients:

>>> list(map(lambda dec: dec[0], modes))
[0.9851714310094161,
 0.1690286950361957,
 0.02900073920775954,
 0.004975740210361192,
 0.0008537020544076649,
 0.00014647211608480773,
 2.51306421011773e-05,
 4.311736522272035e-06,
 7.39777032460608e-07,
 1.2692567250688184e-07]

The second and the third elements in each tuple in the list decompositions are lambda functions for the modes of susbsystems A and B respectively. The Schmidt functions can be plotted:

>>> xarray = np.linspace(-10., 10., 100)

    plt.subplot(3, 2, 1)
    plt.plot(xarray, modes[0][1](xarray))
    plt.subplot(3, 2, 2)
    plt.plot(xarray, modes[0][2](xarray))

    plt.subplot(3, 2, 3)
    plt.plot(xarray, modes[1][1](xarray))
    plt.subplot(3, 2, 4)
    plt.plot(xarray, modes[1][2](xarray))

    plt.subplot(3, 2, 5)
    plt.plot(xarray, modes[2][1](xarray))
    plt.subplot(3, 2, 6)
    plt.plot(xarray, modes[2][2](xarray))

alt

Useful Links

Reference

  • Artur Ekert, Peter L. Knight, "Entangled quantum systems and the Schmidt decomposition", Am. J. Phys. 63, 415 (1995).

Acknowledgement

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyqentangle-3.2.1.tar.gz (47.5 kB view details)

Uploaded Source

File details

Details for the file pyqentangle-3.2.1.tar.gz.

File metadata

  • Download URL: pyqentangle-3.2.1.tar.gz
  • Upload date:
  • Size: 47.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.0

File hashes

Hashes for pyqentangle-3.2.1.tar.gz
Algorithm Hash digest
SHA256 707e3a237df8a166e98b22b86d45089b19752d7bedb5ffb7ee269929cd125cf2
MD5 bf1b73c286e39c98a26e33a35e1d165f
BLAKE2b-256 4177adf7c0dae3d9d3382805eebabe1bb82b123b2c99d84aedfe2075af12e637

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page