Skip to main content

PyTorch bindings for PYRO-NN (

Project description

PyPI version


This repository provides PyTorch bindings for PYRO-NN, a collection of back-rotatable projectors for CT reconstruction.

Feel free to cite our publication:

author = {Syben, Christopher and Michen, Markus and Stimpel, Bernhard and Seitz, Stephan and Ploner, Stefan and Maier, Andreas K.},
title = {Technical Note: PYRO-NN: Python reconstruction operators in neural networks},
year = {2019},
journal = {Medical Physics},


From PyPI:

pip install pyronn-torch

From this repository:

git clone --recurse-submodules --recursive
cd pyronn-torch
pip install torch
pip install -e .

You can build a binary wheel using

python bdist_wheel


#                  volume_spacing,
#                  volume_origin,
#                  projection_shape,
#                  projection_spacing,
#                  projection_origin,
#                  projection_matrices)
projector = pyronn_torch.ConeBeamProjector(
    (128, 128, 128),
    (2.0, 2.0, 2.0),
    (-127.5, -127.5, -127.5),
    (2, 480, 620),
    [1.0, 1.0],
    (0, 0),
    np.array([[[-3.10e+2, -1.20e+03,  0.00e+00,  1.86e+5],
               [-2.40e+2,  0.00e+00,  1.20e+03,  1.44e+5],
               [-1.00e+00,  0.00e+00,  0.00e+00,  6.00e+2]],
              [[-2.89009888e+2, -1.20522754e+3, -1.02473585e-13,
               [-2.39963440e+2, -4.18857765e+0,  1.20000000e+3,
               [-9.99847710e-01, -1.74524058e-2,  0.00000000e+0,
                6.00000000e+2]]]) # two projection matrices
projection = projector.new_projection_tensor(requires_grad=True)

projection += 1.
result = projector.project_backward(projection, use_texture=with_texture)

assert projection.requires_grad
assert result.requires_grad

loss = result.mean()

Or easier with PyCONRAD (pip install pyconrad)

projector = pyronn_torch.ConeBeamProjector.from_conrad_config()

The configuration can then be done using CONRAD (startable using conrad from command line)

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyronn-torch-0.0.4.tar.gz (30.6 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page