Skip to main content

PySAD is an open-source python framework for anomaly detection on streaming multivariate data.

Project description


Python Streaming Anomaly Detection (PySAD)

PyPI GitHub release (latest by date) Documentation status Gitter Azure Pipelines Build Status Travis CI Build Status Appveyor Build status Circle CI Coverage Status PyPI - Python Version Supported Platforms License

PySAD is an open-source python framework for anomaly detection on streaming multivariate data.



Online Anomaly Detection

PySAD provides methods for online/sequential anomaly detection, i.e. anomaly detection on streaming data, where model updates itself as a new instance arrives.


Streaming methods efficiently handle the limitied memory and processing time requirements of the data streams so that they can be used in near real-time. The methods can only store an instance or a small window of recent instances.


PySAD contains stream simulators, evaluators, preprocessors, statistic trackers, postprocessors, probability calibrators and more. In addition to streaming models, PySAD also provides integrations for batch anomaly detectors of the PyOD so that they can be used in the streaming setting.


PySAD serves models that are specifically designed for both univariate and multivariate data. Furthermore, one can experiment via PySAD in supervised, semi-supervised and unsupervised setting.

User Friendly

Users with any experience level can easily use PySAD. One can easily design experiments and combine the tools in the framework. Moreover, the existing methods in PySAD are easy to extend.

Free and Open Source Software (FOSS)

PySAD is distributed under BSD License 2.0 and favors FOSS principles.


The PySAD framework can be installed via:

pip install -U pysad

Alternatively, you can install the library directly using the source code in Github repository by:

git clone
cd pysad
pip install .

Required Dependencies:

  • Python 3.8

  • numpy==1.23.5

  • scikit-learn>=1.3.0

  • scipy==1.10.0

  • pyod==1.1.0

  • combo==0.1.3

Optional Dependencies:

  • rrcf==0.4.3 (Only required for pysad.models.robust_random_cut_forest.RobustRandomCutForest)

  • PyNomaly==0.3.3 (Only required for pysad.models.loop.StreamLocalOutlierProbability)

  • mmh3==2.5.1 (Only required for pysad.models.xstream.xStream)

  • pandas==2.0.3 (Only required for pysad.utils.pandas_streamer.PandasStreamer)


Semantic versioning is used for this project.


This project is licensed under the BSD License 2.0.

Citing PySAD

If you use PySAD for a scientific publication, please cite the following paper:

  title={PySAD: A Streaming Anomaly Detection Framework in Python},
  author={Yilmaz, Selim F and Kozat, Suleyman S},
  journal={arXiv preprint arXiv:2009.02572},

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pysad-0.2.0.tar.gz (42.4 kB view hashes)

Uploaded Source

Built Distribution

pysad-0.2.0-py3-none-any.whl (74.1 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page