Skip to main content

A Python wrapper for solid to compute solid Earth tides

Project description

Language CircleCI Conda Download Version License Citation

PySolid

The Python based solid Earth tides (PySolid) is a thin Python wrapper of the solid.for program (by Dennis Milbert based on dehanttideinelMJD.f from V. Dehant, S. Mathews, J. Gipson and C. Bruyninx) to calculate solid Earth tides in east, north and up directions (section 7.1.1 in the 2010 IERS Conventions). Solid Earth tides introduce large offsets in SAR observations and long spatial wavelength ramps in InSAR observations, as shown in the Sentinel-1 data with regular acquisitions and large swaths (Yunjun et al., 2022).

This is research code provided to you "as is" with NO WARRANTIES OF CORRECTNESS. Use at your own risk.

1. Install

PySolid is available on the conda-forge channel and the main archive of the Debian GNU/Linux OS. The released version can be installed via conda as:

# run "conda update pysolid" to update the installed version
conda install -c conda-forge pysolid

or via apt (or other package managers) for Debian-derivative OS users, including Ubuntu, as:

apt install python3-pysolid

Or build from source:

PySolid relies on a few Python modules as described in requirements.txt and NumPy's f2py to build the Fortran source code. You could use conda to install all the dependencies, including the Fortran compiler, or use your own installed Fortran compiler and pip to install the rest.

a. Download source code
# run "cd PySolid; git pull" to update to the latest development version
git clone https://github.com/insarlab/PySolid.git
b. Install dependencies
# option 1: use conda to install dependencies into an existing, activated environment
conda install -c conda-forge fortran-compiler --file PySolid/requirements.txt --file PySolid/tests/requirements.txt

# option 2: use conda to install dependencies into a new environment, e.g. named "pysolid"
conda create --name pysolid fortran-compiler --file PySolid/requirements.txt --file PySolid/tests/requirements.txt
conda activate pysolid

# option 3: have a Fortran compiler already installed and use pip to install the dependencies
python -m pip install -r PySolid/requirements.txt -r PySolid/tests/requirements.txt
c. Install PySolid
# option 1: use pip to install pysolid into the current environment
python -m pip install ./PySolid

# option 2: use pip to install pysolid in develop mode (editable) into the current environment
python -m pip install -e ./PySolid

# option 3: manually compile the Fortran code and setup environment variable
cd PySolid/src/pysolid
f2py -c -m solid solid.for
# Replace <path-to-folder> with proper path to PySolid main folder
export PYTHONPATH=${PYTHONPATH}:<path-to-folder>/PySolid/src
d. Test the installation

To test the installation, run the following:

python -c "import pysolid; print(pysolid.__version__)"
python PySolid/tests/grid.py
python PySolid/tests/point.py

2. Usage

PySolid could compute solid Earth tides in two modes: point and grid. Both modes produce displacement in east, north and up directions.

  • Point mode: compute 1D tides time-series at a specific point for a given time period
  • Grid mode: compute 2D tides grid at a specific time for a given spatial grid

2.1 Point Mode [notebook]

import datetime as dt
import pysolid

# prepare inputs
lat, lon = 34.0, -118.0                 # point of interest in degree, Los Angles, CA
step_sec = 60 * 5                       # sample spacing in time domain in seconds
dt0 = dt.datetime(2020, 1, 1, 4, 0, 0)  # start date and time
dt1 = dt.datetime(2021, 1, 1, 2, 0, 0)  # end   date and time

# compute SET via pysolid
dt_out, tide_e, tide_n, tide_u = pysolid.calc_solid_earth_tides_point(
    lat, lon, dt0, dt1,
    step_sec=step_sec,
    display=False,
    verbose=False,
)

# plot the power spectral density of SET up component
pysolid.plot_power_spectral_density4tides(tide_u, sample_spacing=step_sec)

2.2 Grid Mode [notebook]

import datetime as dt
import numpy as np
import pysolid

# prepare inputs
dt_obj = dt.datetime(2020, 12, 25, 14, 7, 44)
meta = {
    'LENGTH' : 500,                # number of rows
    'WIDTH'  : 450,                # number of columns
    'X_FIRST': -126,               # min longitude in degree (upper left corner of the upper left pixel)
    'Y_FIRST': 43,                 # max laitude   in degree (upper left corner of the upper left pixel)
    'X_STEP' :  0.000925926 * 30,  # output resolution in degree
    'Y_STEP' : -0.000925926 * 30,  # output resolution in degree
}

# compute SET via pysolid
tide_e, tide_n, tide_u = pysolid.calc_solid_earth_tides_grid(
    dt_obj, meta,
    display=False,
    verbose=True,
)

# project SET from ENU to satellite line-of-sight (LOS) direction with positive for motion towards the satellite
# inc_angle : incidence angle of the LOS vector (from ground to radar platform) measured from vertical.
# az_angle  : azimuth   angle of the LOS vector (from ground to radar platform) measured from the north, with anti-clockwirse as positive.
inc_angle = np.deg2rad(34)   # radian, typical value for Sentinel-1
az_angle = np.deg2rad(-102)  # radian, typical value for Sentinel-1 descending track
tide_los = (  tide_e * np.sin(inc_angle) * np.sin(az_angle) * -1
            + tide_n * np.sin(inc_angle) * np.cos(az_angle)
            + tide_u * np.cos(inc_angle))

3. Citing this work

  • Yunjun, Z., Fattahi, H., Pi, X., Rosen, P., Simons, M., Agram, P., & Aoki, Y. (2022). Range Geolocation Accuracy of C-/L-band SAR and its Implications for Operational Stack Coregistration. IEEE Trans. Geosci. Remote Sens., 60, 5227219. [ doi | arxiv | data | notebook ]
  • Milbert, D. (2018), "solid: Solid Earth Tide", [Online]. Available: http://geodesyworld.github.io/SOFTS/solid.htm. Accessd on: 2020-09-06.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pysolid-0.3.4.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

pysolid-0.3.4-cp314-cp314t-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.14tmusllinux: musl 1.2+ x86-64

pysolid-0.3.4-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pysolid-0.3.4-cp314-cp314t-macosx_15_0_arm64.whl (853.6 kB view details)

Uploaded CPython 3.14tmacOS 15.0+ ARM64

pysolid-0.3.4-cp314-cp314-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ x86-64

pysolid-0.3.4-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pysolid-0.3.4-cp314-cp314-macosx_15_0_arm64.whl (852.5 kB view details)

Uploaded CPython 3.14macOS 15.0+ ARM64

pysolid-0.3.4-cp313-cp313-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

pysolid-0.3.4-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pysolid-0.3.4-cp313-cp313-macosx_15_0_arm64.whl (852.6 kB view details)

Uploaded CPython 3.13macOS 15.0+ ARM64

pysolid-0.3.4-cp312-cp312-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

pysolid-0.3.4-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pysolid-0.3.4-cp312-cp312-macosx_15_0_arm64.whl (852.6 kB view details)

Uploaded CPython 3.12macOS 15.0+ ARM64

pysolid-0.3.4-cp311-cp311-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

pysolid-0.3.4-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pysolid-0.3.4-cp311-cp311-macosx_15_0_arm64.whl (852.4 kB view details)

Uploaded CPython 3.11macOS 15.0+ ARM64

pysolid-0.3.4-cp310-cp310-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

pysolid-0.3.4-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pysolid-0.3.4-cp310-cp310-macosx_15_0_arm64.whl (852.2 kB view details)

Uploaded CPython 3.10macOS 15.0+ ARM64

pysolid-0.3.4-cp39-cp39-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

pysolid-0.3.4-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pysolid-0.3.4-cp39-cp39-macosx_15_0_arm64.whl (852.2 kB view details)

Uploaded CPython 3.9macOS 15.0+ ARM64

pysolid-0.3.4-cp38-cp38-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ x86-64

pysolid-0.3.4-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pysolid-0.3.4-cp38-cp38-macosx_15_0_arm64.whl (851.8 kB view details)

Uploaded CPython 3.8macOS 15.0+ ARM64

File details

Details for the file pysolid-0.3.4.tar.gz.

File metadata

  • Download URL: pysolid-0.3.4.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pysolid-0.3.4.tar.gz
Algorithm Hash digest
SHA256 01376cd3bd1fa1fa70919466ec25ae8159c5b1d5d02017462df51a5e114b1b8c
MD5 f779eea9400e893e9308e6dec832ab72
BLAKE2b-256 3f362f9557ccd73c2db82cd53c4a1ea5c8e6477026f8bd2a11dccade1fb4debc

See more details on using hashes here.

File details

Details for the file pysolid-0.3.4-cp314-cp314t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pysolid-0.3.4-cp314-cp314t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 96affec530e3f3e17e5cfdb3abc8bce7b7fb9ae729f302ea2d3765a44d9c958c
MD5 fb28188b76cf2f2378fe4dc256a5c312
BLAKE2b-256 668817345d2aa7f77c683bdc71892fb7d364fdf3fa9a7ce5e06ec921f26238a6

See more details on using hashes here.

File details

Details for the file pysolid-0.3.4-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pysolid-0.3.4-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 81c85552a25774a6dc71ef5de915649aebb23e351a036c895247ce69caffd9dd
MD5 56469e8f1ca39a0ffc88886d9b4e79c0
BLAKE2b-256 7fa47350b6f3f8ca740bb0f53ead404c2495c552d287201d8eb2f1fc46835c83

See more details on using hashes here.

File details

Details for the file pysolid-0.3.4-cp314-cp314t-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for pysolid-0.3.4-cp314-cp314t-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 e7dfa14900782f9b03c53c72dab8885a15459ef98f76666ecf3290bfeaf2c115
MD5 cc8dfb668917c896aad4747b4825f1b1
BLAKE2b-256 8864a6d559e88771f90b939c604f731a9b3875884cc6fc53842c288ea9f800cb

See more details on using hashes here.

File details

Details for the file pysolid-0.3.4-cp314-cp314-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pysolid-0.3.4-cp314-cp314-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b00755d7d876ff01302236064ef91c78a54e2374bfe7d868dddebcae083b1282
MD5 c09034fff512c78b43531da1c4ae3614
BLAKE2b-256 efaee3428fe4a0687f332197957435db6ffb84fee538a2a6a43323c92f29146f

See more details on using hashes here.

File details

Details for the file pysolid-0.3.4-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pysolid-0.3.4-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4ceb8f3a2236a4b121d40344a738b35686b8db570f2490bb819ab398de411a38
MD5 78edf012e12134b6f2b5e0058d8076ac
BLAKE2b-256 77c3f9fac0d484ae6b38648c072dc0f52952d43f1fc2977c260e4a3a7d5c37ea

See more details on using hashes here.

File details

Details for the file pysolid-0.3.4-cp314-cp314-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for pysolid-0.3.4-cp314-cp314-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 f515c30d37ebd915b32cfe86878b623f1503fe90d8a988acc66d8c1b3a4c3d37
MD5 ca32963cdd08a8afaa46afde38d391ec
BLAKE2b-256 06903132df1407eed1be45bb69623f27cfd8d5f5798b05921dbc4f6a996c8275

See more details on using hashes here.

File details

Details for the file pysolid-0.3.4-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pysolid-0.3.4-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b5410b522e716eccdfce4d63dc9ebd937748c8411203a8f509183e313b0a56d1
MD5 ab0b35c2f7889ce0b2a29d4e38262777
BLAKE2b-256 fcd2067f677f218702bbc52357324e7f2c4c184e3fbbadd9b9dce7da9eae9b41

See more details on using hashes here.

File details

Details for the file pysolid-0.3.4-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pysolid-0.3.4-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 16b485947c2fb108da8da482418090245834fb5c93098abd06af926f6c42d663
MD5 6539f38a3210ec4efcc53961f41086c1
BLAKE2b-256 47c063f53f056b975869c6dd6d5a64474aeba70ea16ecb1d2da73a212913e930

See more details on using hashes here.

File details

Details for the file pysolid-0.3.4-cp313-cp313-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for pysolid-0.3.4-cp313-cp313-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 75a3d4e933151b1f7d79a757a05177c62a2545fdebe0942791dc4e566a345a29
MD5 b717ba494b1230f96b894236037bafa0
BLAKE2b-256 0a90ac417a4aacb4bee35b1aa475535c8208a379671e925e09b75fcaa86af011

See more details on using hashes here.

File details

Details for the file pysolid-0.3.4-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pysolid-0.3.4-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f1395e645e21a742472c62588c496c499300a0e1903ec3a23396092cceead6b5
MD5 f8d0d6bbf249542a755f1107ca906fc5
BLAKE2b-256 2d420daafe194ab4967c5866f5130b66c6ce82e5157f236b3e564dd8285484df

See more details on using hashes here.

File details

Details for the file pysolid-0.3.4-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pysolid-0.3.4-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b02c740d3620d586581ac496e3748d79bdcc70469c26c6c8dea97e323c089ffe
MD5 28c79616acce1f4d24ca0acba1e1573d
BLAKE2b-256 38ae01376ed53db062d49f17fd7ea0cffe4ae5db1df15f594f712076550d3360

See more details on using hashes here.

File details

Details for the file pysolid-0.3.4-cp312-cp312-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for pysolid-0.3.4-cp312-cp312-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 bab209ae66a6f766c61f458faa8189c3b0bd6a6665bf5bcf459b70300a362ec2
MD5 20f8d649a3e0336ab7eb5c93dca328b7
BLAKE2b-256 4697c96678641450e26506b31ace47f9a4eec8ad2246be07a19f5cc84fbf43b1

See more details on using hashes here.

File details

Details for the file pysolid-0.3.4-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pysolid-0.3.4-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 582f79e0c5fe6d406380454c0f85894fba930a15000c3b89ade765cd49df2672
MD5 f8ec602d1a8d5afde9096e01344c0ef1
BLAKE2b-256 b17dfe74aa9df06c5458aa2fe1e5897080abff151f4809058d80e86eeaafb537

See more details on using hashes here.

File details

Details for the file pysolid-0.3.4-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pysolid-0.3.4-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5c0e2f81314f13e33954489d5cada0a90f47a2856d838b6d0464df52af89bc4a
MD5 13a87d0da7d1209500d79b86cb0a1653
BLAKE2b-256 d5c445974c41bc8d28671cb428889c38146e6fa96a77442c63b957c21bdd373f

See more details on using hashes here.

File details

Details for the file pysolid-0.3.4-cp311-cp311-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for pysolid-0.3.4-cp311-cp311-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 e4ba9989df524552562bc024e0038e3331c9656a6da5248d51ed4d9a8ac6998a
MD5 2b856a294f510f36a4ba8839022a4e32
BLAKE2b-256 aca536c3207691f75af1a703e3a4df69e85556becbc35ddd5bd4964bdbb90ca3

See more details on using hashes here.

File details

Details for the file pysolid-0.3.4-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pysolid-0.3.4-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 46e17b1357450a79cafa3efc6a613602b44ed72eda48e54d118c63cbdc1d7308
MD5 8fca3ad9eafa9fc69a06761dd2d01238
BLAKE2b-256 0e266a594122e0231e3cdaca13c03cc465b9a9e3038c7fc7cf624adf3fb6c2be

See more details on using hashes here.

File details

Details for the file pysolid-0.3.4-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pysolid-0.3.4-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 edd57de51b2320d205190195ac8817426ddd46386c23dadb110f776769f0a47e
MD5 57dd2fe867d293875cc7efc820ddd0cb
BLAKE2b-256 a4d9f555aef41824557c2f50e2ee86f7b07ba50daf0255083ae2ff5cbf381e16

See more details on using hashes here.

File details

Details for the file pysolid-0.3.4-cp310-cp310-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for pysolid-0.3.4-cp310-cp310-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 396da479cccc04fed2160c34299f623aee9cd19bd0bc1f7c9fb195676e5a08b0
MD5 bbff03c620c241c9164b5fd06f3279e1
BLAKE2b-256 c7d48e8a1417cec379f6a5f042f469a86dee5ab5ff343e09986179f7a03b6e69

See more details on using hashes here.

File details

Details for the file pysolid-0.3.4-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pysolid-0.3.4-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b2c4a4851bf62f9f5d704d1368e40481b7c2a357414dddc98902ffe6084f27b4
MD5 7f0be61182aa50ad8fa0a02f3b7fecc5
BLAKE2b-256 f0114f64a0da05dd637a0cb3a790c12c0baa102725776d1cc7932b663813b6ac

See more details on using hashes here.

File details

Details for the file pysolid-0.3.4-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pysolid-0.3.4-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ab0024b3b5b3d45cfb07c753d61024ee73b38b6dd220f5b25cc3eaed1c900c0b
MD5 e2c4cd3b356bec2521707ab55cfa917b
BLAKE2b-256 0068081d968e50a7d52a559497fb10f3b1b83920aee9eb330c89d5b7a8380238

See more details on using hashes here.

File details

Details for the file pysolid-0.3.4-cp39-cp39-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for pysolid-0.3.4-cp39-cp39-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 770fcc193ce8cafdf2f94ebd2d033395ee43fb56c8ff0c07f24a5c1813fc5b9a
MD5 6f83e4e8ec9fc4fc874da3b41aa7ec6e
BLAKE2b-256 56720054e4cd80c2b0342fd43e0eaa2532d50db1df1789dfcdba299544517f06

See more details on using hashes here.

File details

Details for the file pysolid-0.3.4-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pysolid-0.3.4-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 709730a4eed274b0581d4db231960bf50a5309784102b5e7cf90550670dfde4a
MD5 6b93df79613fa6f43147c8ca711de837
BLAKE2b-256 96ea6cf94ce2367f06b6efabea9a193ed0b479cef0a3ae64afc7802058a9155e

See more details on using hashes here.

File details

Details for the file pysolid-0.3.4-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pysolid-0.3.4-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2adaf15d81ceec0b4486c0a0d95931dc4a9bfe70fe2d11ebd925387754cfdb7c
MD5 e5e20bcf8770a363bafb226ea432fb73
BLAKE2b-256 3676c29f1e4415099016a81633a7c18837c6a09a1605e1921d414d9f01ba723b

See more details on using hashes here.

File details

Details for the file pysolid-0.3.4-cp38-cp38-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for pysolid-0.3.4-cp38-cp38-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 679c04cb188430b8d2f3e2f4eb7246fc50c4ed6fa74a732981eb3ac32ebec56f
MD5 838725da04ad07dba728e9962af43957
BLAKE2b-256 c4fa60061c8a624ee389ed3b95bf4d19cd9d3e2003549e7582af6d4a17e7fcda

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page