Skip to main content

This provides the SOLNP optimization Algorithm.

Project description

codecov Documentation Status Python Versions

See full documentation on http://solnp.readthedocs.io.

pysolnp - Nonlinear optimization with the augmented Lagrange method

Description

SOLNP solves the general nonlinear optimization problem on the form:

    minimize f(x)
      subject to
       g(x) = e_x
   l_h <= h(x) <= u_h
   l_x <   x   < u_X

where f(x), g(x) and h(x) are smooth functions.

Compatibility

Precompiled Wheels are available for CPython:

  • Windows: Python 3.6+
  • Linux: Python 3.6+
  • Mac OS: Python 3.6+

For other systems, or to have BLAS and LAPACK support, please build the wheels manually. Note: For best results, building it from source is recommended, as BLAS and LAPACK will make a difference.

Installation

Simply install the package through PyPi with: pip install pysolnp

When compiling from source code you will need CMake.
See the README for the C++ code for details.

Usage

Below is the Box example, for the complete example see /python_examples/example_box.py.

import pysolnp

def f_objective_function(x):
    return -1 * x[0] * x[1] * x[2]

def g_equality_constraint_function(x):
    return [4 * x[0] * x[1] + 2 * x[1] * x[2] + 2 * x[2] * x[0]]

x_starting_point = [1.1, 1.1, 9.0]
x_l = [1.0, 1.0, 1.0]
x_u = [10.0, 10.0, 10.0]
e_x = [100]

result = pysolnp.solve(
    obj_func=f_objective_function,
    par_start_value=x_starting_point,
    par_lower_limit=x_l,
    par_upper_limit=x_u,
    eq_func=g_equality_constraint_function,
    eq_values=e_x)

result.solve_value
result.optimum
result.callbacks
result.converged

Output:

>>> result.solve_value
-48.11252206814995
>>> result.optimum
[2.8867750707815447, 2.8867750713194273, 5.773407748939196]
>>> result.callbacks
118
>>> result.converged
True

Parameters

The basic signature is:

solve(obj_func: function, par_start_value: List, par_lower_limit: object = None, par_upper_limit: object = None, eq_func: object = None, eq_values: object = None, ineq_func: object = None, ineq_lower_bounds: object = None, ineq_upper_bounds: object = None, rho: float = 1.0, max_major_iter: int = 10, max_minor_iter: int = 10, delta: float = 1e-05, tolerance: float = 0.0001, debug: bool = False) -> pysolnp.Result

Inputs:

Parameter Type Default value* Description
obj_func Callable[List, float] - The objective function f(x) to minimize.
par_start_value List - The starting parameter x_0.
par_lower_limit List None The parameter lower limit x_l.
par_upper_limit List None The parameter upper limit x_u.
eq_func Callable[List, float] None The equality constraint function h(x).
eq_values List None The equality constraint values e_x.
ineq_func Callable[List, float] None The inequality constraint function g(x).
ineq_lower_bounds List None The inequality constraint lower limit g_l.
ineq_upper_bounds List None The inequality constraint upper limit g_l.
rho float 1.0 Penalty weighting scalar for infeasability in the augmented objective function.**
max_major_iter int 400 Maximum number of outer iterations.
max_minor_iter int 800 Maximum number of inner iterations.
delta float 1e-07 Step-size for forward differentiation.
tolerance float 1e-08 Relative tolerance on optimality.
debug bool False If set to true some debug output will be printed.

*Defaults for configuration parameters are based on the defaults for Rsolnp.
**Higher values means the solution will bring the solution into the feasible region with higher weight. Very high values might lead to numerical ill conditioning or slow down convergence.

Output: The function returns the pysolnp.Result with the below properties.

Property Type Description
solve_value float The value of the objective function at optimum f(x*).
optimum List[float] A list of parameters for the optimum x*.
callbacks int Number of callbacks done to find this optimum.
converged boolean Indicates if the algorithm converged or not.
hessian_matrix List[List[float]] The final Hessian Matrix used by pysolnp.

Use-cases and Applications

Authors

License

This project is licensed under the Boost License - see the license file for details.

Acknowledgments

  • Yinyu Ye - Publisher and mastermind behind the original SOLNP algorithm, Original Sources
  • Alexios Ghalanos and Stefan Theussl - The people behind RSOLNP, Github repository
  • Davis King - The mastermind behind Dlib, check out his blog! Blog

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pysolnp-2025.10.17.tar.gz (25.9 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

pysolnp-2025.10.17-cp314-cp314t-win_amd64.whl (231.6 kB view details)

Uploaded CPython 3.14tWindows x86-64

pysolnp-2025.10.17-cp314-cp314t-win32.whl (208.5 kB view details)

Uploaded CPython 3.14tWindows x86

pysolnp-2025.10.17-cp314-cp314t-musllinux_1_2_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.14tmusllinux: musl 1.2+ x86-64

pysolnp-2025.10.17-cp314-cp314t-musllinux_1_2_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.14tmusllinux: musl 1.2+ ARM64

pysolnp-2025.10.17-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (283.2 kB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.17+ x86-64

pysolnp-2025.10.17-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (255.6 kB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.17+ ARM64

pysolnp-2025.10.17-cp314-cp314t-macosx_11_0_arm64.whl (198.6 kB view details)

Uploaded CPython 3.14tmacOS 11.0+ ARM64

pysolnp-2025.10.17-cp314-cp314t-macosx_10_13_x86_64.whl (239.2 kB view details)

Uploaded CPython 3.14tmacOS 10.13+ x86-64

pysolnp-2025.10.17-cp314-cp314-win_amd64.whl (222.1 kB view details)

Uploaded CPython 3.14Windows x86-64

pysolnp-2025.10.17-cp314-cp314-win32.whl (194.9 kB view details)

Uploaded CPython 3.14Windows x86

pysolnp-2025.10.17-cp314-cp314-musllinux_1_2_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ x86-64

pysolnp-2025.10.17-cp314-cp314-musllinux_1_2_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ ARM64

pysolnp-2025.10.17-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (277.3 kB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ x86-64

pysolnp-2025.10.17-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (248.9 kB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ ARM64

pysolnp-2025.10.17-cp314-cp314-macosx_11_0_arm64.whl (188.0 kB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

pysolnp-2025.10.17-cp314-cp314-macosx_10_13_x86_64.whl (228.5 kB view details)

Uploaded CPython 3.14macOS 10.13+ x86-64

pysolnp-2025.10.17-cp313-cp313-win_amd64.whl (211.1 kB view details)

Uploaded CPython 3.13Windows x86-64

pysolnp-2025.10.17-cp313-cp313-win32.whl (185.2 kB view details)

Uploaded CPython 3.13Windows x86

pysolnp-2025.10.17-cp313-cp313-musllinux_1_2_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

pysolnp-2025.10.17-cp313-cp313-musllinux_1_2_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARM64

pysolnp-2025.10.17-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (271.5 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

pysolnp-2025.10.17-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (242.7 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

pysolnp-2025.10.17-cp313-cp313-macosx_11_0_arm64.whl (181.5 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

pysolnp-2025.10.17-cp313-cp313-macosx_10_13_x86_64.whl (222.5 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

pysolnp-2025.10.17-cp312-cp312-win_amd64.whl (205.2 kB view details)

Uploaded CPython 3.12Windows x86-64

pysolnp-2025.10.17-cp312-cp312-win32.whl (179.5 kB view details)

Uploaded CPython 3.12Windows x86

pysolnp-2025.10.17-cp312-cp312-musllinux_1_2_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

pysolnp-2025.10.17-cp312-cp312-musllinux_1_2_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARM64

pysolnp-2025.10.17-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (265.6 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

pysolnp-2025.10.17-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (236.8 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

pysolnp-2025.10.17-cp312-cp312-macosx_11_0_arm64.whl (175.7 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

pysolnp-2025.10.17-cp312-cp312-macosx_10_13_x86_64.whl (216.7 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

pysolnp-2025.10.17-cp311-cp311-win_amd64.whl (198.3 kB view details)

Uploaded CPython 3.11Windows x86-64

pysolnp-2025.10.17-cp311-cp311-win32.whl (172.7 kB view details)

Uploaded CPython 3.11Windows x86

pysolnp-2025.10.17-cp311-cp311-musllinux_1_2_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

pysolnp-2025.10.17-cp311-cp311-musllinux_1_2_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARM64

pysolnp-2025.10.17-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (259.7 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

pysolnp-2025.10.17-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (232.0 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

pysolnp-2025.10.17-cp311-cp311-macosx_11_0_arm64.whl (170.6 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

pysolnp-2025.10.17-cp311-cp311-macosx_10_9_x86_64.whl (210.6 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

pysolnp-2025.10.17-cp310-cp310-win_amd64.whl (191.5 kB view details)

Uploaded CPython 3.10Windows x86-64

pysolnp-2025.10.17-cp310-cp310-win32.whl (168.1 kB view details)

Uploaded CPython 3.10Windows x86

pysolnp-2025.10.17-cp310-cp310-musllinux_1_2_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

pysolnp-2025.10.17-cp310-cp310-musllinux_1_2_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ ARM64

pysolnp-2025.10.17-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (254.1 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

pysolnp-2025.10.17-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (226.8 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

pysolnp-2025.10.17-cp310-cp310-macosx_11_0_arm64.whl (165.2 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

pysolnp-2025.10.17-cp310-cp310-macosx_10_9_x86_64.whl (205.2 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

pysolnp-2025.10.17-cp39-cp39-win_amd64.whl (187.5 kB view details)

Uploaded CPython 3.9Windows x86-64

pysolnp-2025.10.17-cp39-cp39-win32.whl (164.1 kB view details)

Uploaded CPython 3.9Windows x86

pysolnp-2025.10.17-cp39-cp39-musllinux_1_2_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

pysolnp-2025.10.17-cp39-cp39-musllinux_1_2_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ ARM64

pysolnp-2025.10.17-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (250.5 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

pysolnp-2025.10.17-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (222.9 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

pysolnp-2025.10.17-cp39-cp39-macosx_11_0_arm64.whl (161.3 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

pysolnp-2025.10.17-cp39-cp39-macosx_10_9_x86_64.whl (201.3 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

pysolnp-2025.10.17-cp38-cp38-win_amd64.whl (183.2 kB view details)

Uploaded CPython 3.8Windows x86-64

pysolnp-2025.10.17-cp38-cp38-win32.whl (160.1 kB view details)

Uploaded CPython 3.8Windows x86

pysolnp-2025.10.17-cp38-cp38-musllinux_1_2_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ x86-64

pysolnp-2025.10.17-cp38-cp38-musllinux_1_2_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ ARM64

pysolnp-2025.10.17-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (245.6 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

pysolnp-2025.10.17-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (218.1 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

pysolnp-2025.10.17-cp38-cp38-macosx_11_0_arm64.whl (197.0 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

pysolnp-2025.10.17-cp38-cp38-macosx_10_9_x86_64.whl (197.0 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file pysolnp-2025.10.17.tar.gz.

File metadata

  • Download URL: pysolnp-2025.10.17.tar.gz
  • Upload date:
  • Size: 25.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pysolnp-2025.10.17.tar.gz
Algorithm Hash digest
SHA256 5cd06678c39e748d13bfb758496051945237cac8183c3724cbce9fa69177959c
MD5 1d9b4ad570e017c2a9f27dde7414b750
BLAKE2b-256 3e702f12c47f53614a23746106f7cdce3649f608a252e1b2960bdc5030d33c25

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp314-cp314t-win_amd64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp314-cp314t-win_amd64.whl
Algorithm Hash digest
SHA256 cb87f9338ff5471920690afc710d29532ecf7941f7986e2bb2d45a79ae891850
MD5 bf194d8cdf828bf0e42af4591b77aaad
BLAKE2b-256 ea65431c323086721f8b324c81c00eaaf503f903ddaf295dfdef741c4f946366

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp314-cp314t-win32.whl.

File metadata

  • Download URL: pysolnp-2025.10.17-cp314-cp314t-win32.whl
  • Upload date:
  • Size: 208.5 kB
  • Tags: CPython 3.14t, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pysolnp-2025.10.17-cp314-cp314t-win32.whl
Algorithm Hash digest
SHA256 ed352bebaf991d7da941d41f7452560fd0f4a4cd99f79c54c9f94d4df6acfd4b
MD5 e8686438c745c02d4ce1cd02bec6d65b
BLAKE2b-256 b8d5392c15816685565b204bd9eb2299a257d68e2a46bbf357e004d512938b83

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp314-cp314t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp314-cp314t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 77906b2e7edc0f74a6704f9f1b87b9d7736ace57c9c770880ce20014388c5095
MD5 feb0ab94e652274f7c5f5117acb957a7
BLAKE2b-256 544acfd0ae3af5b1a037204741eafaa08c0812f3b8585a6a74729b4e36c2bd1b

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp314-cp314t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp314-cp314t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 268fea23c8c4aa7e155620f246f96e1c458c1e0530cce26eda71c9d965fb1aad
MD5 076c3beeb760910dcc1e3dac6a8a0bca
BLAKE2b-256 f0c04b3d9d3dc8e09619be0e1c3cb2e3eb5ed7ad3ccbb8ba48a48db0b3230dc4

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 96cf1944955183768c371b80d75761686085f446e0d067825f7a35d552d0bb3f
MD5 fd7aa0d1f8dd98c53092aedf08a44b54
BLAKE2b-256 7c707d3e1a7f04cd4513c7c329d73040545559c30db5eb773b3f8c15e642816a

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 0787561cb20cfc410ebe9e4bbf7fb3575611b418c6843e708a0c685ef91ec12f
MD5 a897f05b732e68dc80180f804b85bc66
BLAKE2b-256 588e97dd8e4cd1f2418c6cdadfa9478436a400847c5c46c9c5cf45570e439bd0

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp314-cp314t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp314-cp314t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4557fcea56a9c9c4fe8c02b17be8890dfa12da45b31be36c45f855e019da22ef
MD5 f00edab5978cbb8a9030b4702de6d849
BLAKE2b-256 d32a9b3e48d451f6b856a9a128daaf213f7309eecf5cc5e99cfc09f87739427a

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp314-cp314t-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp314-cp314t-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 370268415774175fe9f56c6eeebcb9b8ae94bf007bd29ee5877d6f86b5d2965a
MD5 c07e8f9d3090e8871cb5c5b4dcc8cd72
BLAKE2b-256 d07b1b7fef6003825bae5d302655b7a040261332c7a679e2204d8d8d2a16a1fc

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp314-cp314-win_amd64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 a5eebb64f4c81c93f7d47d1339fe1176a7f53ae267b9a1d00523856a79f32a41
MD5 c983bb95d82523014e25738d28bdbf75
BLAKE2b-256 457e4fd41cc556645d8514add1a3012e4479b6c6a564287b284de04aed353dc6

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp314-cp314-win32.whl.

File metadata

  • Download URL: pysolnp-2025.10.17-cp314-cp314-win32.whl
  • Upload date:
  • Size: 194.9 kB
  • Tags: CPython 3.14, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pysolnp-2025.10.17-cp314-cp314-win32.whl
Algorithm Hash digest
SHA256 1912d377200364f9c4c5bbf7c3859fb37f2a90a73d1c19b8bdca32f4b601e5d9
MD5 4988e3160a167d9488010467468701f3
BLAKE2b-256 809478f736e2edc3036fb00159d0c5ec79828931e5c1692f5674126e1a5aac5e

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp314-cp314-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp314-cp314-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 8a3d1dffa54350a0cd484181c863573c316c9e3ea82442c399f0b17d8de05870
MD5 d3353fcd857b2ff8f9556cbc080840ff
BLAKE2b-256 c39d6aa35bc2238928f6a54c63592729fde2892e0ee0df9a9c5270d0feaa2647

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp314-cp314-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp314-cp314-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 cacac2af3eeabc77534c8bfb0b4359c86612c088d6446fd03fa9b14ae0cdd734
MD5 0e49b3d6289f05e6aae1214ddd1327ca
BLAKE2b-256 fc106c34b1ee19762ac76d86ac7dfb1f153ab4ce61c849aa2293968ee2a945c0

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 4cd942c720f1f7f806befcd4b04764e01521da7adc9a3b2ccca611068298936a
MD5 4544c0c0126f318adbf478a6088be842
BLAKE2b-256 6d7b740dc0f6f3ab605834c4a278c43b802b2c6ac3c9d899bd3bbb2ecfd54d3f

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 b15a3f2778169e89ab4ca6736ddd09d6299503d3592df0ea7430f662d5173386
MD5 ad3dd0af99105a5adf22ca28b142236a
BLAKE2b-256 dc766641f26ec9b264ee97e054507fda679bee166d783c8a9ecd71bddc3d3100

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1a2447b45bca1666c93eeb42b3512e00f1f1dfb0f32a4e8457562e09cd2c4297
MD5 f42e2aaa3f6ecd29c8821c43ed0f1cb4
BLAKE2b-256 cdfb0bb4bfff0d1ad7ef56e01cbda369c2d4377d41859b42bc34a74e758bf37a

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp314-cp314-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp314-cp314-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 dad51bf53e8a0f6896161a07c28b7fa9f8b90d8d024b04691f5cc67d47bd018e
MD5 e396474fa468c2fe41040ea3ccdb65d0
BLAKE2b-256 a2cfaf0276265756071cee8bf06ec85deb50f841a48c67cc20b6ef351f1b2588

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 13eb0b20c22c61691dc04b3b9027133c7feec6762c81a6281ecf826ec324691e
MD5 ecc4e3bedeb8fcb1fd4e76db86c3a4f3
BLAKE2b-256 c4d378f6982ec1a5074a6aad8bfd504d143508af282993a2ab05a7387d18a410

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp313-cp313-win32.whl.

File metadata

  • Download URL: pysolnp-2025.10.17-cp313-cp313-win32.whl
  • Upload date:
  • Size: 185.2 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pysolnp-2025.10.17-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 45cbb9f51b52da0d755f089f3a2d8d5bacb194b5d33e89bff45d3586e5cc6a10
MD5 e864e66fea05813a340daf780e4c81bc
BLAKE2b-256 84c3bbbb61e69b55194ad3d05c6fc632dbe2d7eba919f4a75c57070d7d0608af

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 3002a2dbe6196862abe4cea7cf0438482d480f071bb7b1a786ac8df6365c9dd3
MD5 a838f1e1ebde6b3a5b93c02f01e487ff
BLAKE2b-256 1337dd01df35b8bd29e05fc0b5c958b1d105d85f9c751a7859fa7f9f402e3c88

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 ea7cba014cec25f9facfd61ef03e3430770c64944fd7d056cce998a7a72a817e
MD5 cfe482395b9d9fa7eddfeede32dd639f
BLAKE2b-256 dd2f3d1d037cf7cb3129a525771b36c4c2a57c0997e1ac47ac11c4ae629cf537

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 185266fba6d0d5f07aa3e02af5a8157826820702ed368a2c5f1e44df60592011
MD5 6b06187abfe283bc81a21522f12a4247
BLAKE2b-256 1e2b62f645aaa7b201d0517c3c7f2e5e234f12d9704232efe794ae45093120fd

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 aa2b9222dcc23d717c9f57db4152796789ee0370dc0449bdbc69f5fa5ca33d99
MD5 696b68705be53254ebdf25054e7ec8a6
BLAKE2b-256 d4be6672b1f4331e7b538878699a99b4621b976e4f37396150ce854eba8073ed

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a3c3a1bb917d6c19ff8231703b44e658c0dec9049824dec416a5c31bb675e912
MD5 5cc225b08e5f0690ef6f7c93823b6aab
BLAKE2b-256 e4d4fd44919bb07a19bbad6a8ba4f41d84f869989b68150f9b89ce85c7018382

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 420c34a5961441b137da818bf3b6b581b0a7cf44a93d920b6df2b36fe2477c29
MD5 f68cc26e2caa40b3d34dd19a8cd62cc5
BLAKE2b-256 0247b295346b01bbc06a37751079ef6b215ffae9923369382378f87ada2737bd

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 03df7bc6790de46607e40aab639748192c96436d6bb44643871e58bdebb76f38
MD5 28a0966aebbb0f0a4ac8c278676eb806
BLAKE2b-256 37d0be8aba5dde45266757ad4801898da3cafb5864989d3161c29258ce2a47f3

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp312-cp312-win32.whl.

File metadata

  • Download URL: pysolnp-2025.10.17-cp312-cp312-win32.whl
  • Upload date:
  • Size: 179.5 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pysolnp-2025.10.17-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 a7f2d34ecc17564872a545921c9eb46df57cf5dbb1551a50dea8d4341bc4c4df
MD5 3c1960e47ca2a07c113b06e6b1fd17b3
BLAKE2b-256 8126e293ebb148508261816c26880519ca43d08ae56311015a353eb09d81f8ee

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 536e1e22a52497896722f7693e0328e491ef5933ecbcba8ff8b2c411280db2a7
MD5 e08fe31fdccd10359bbecbe33ec2bd13
BLAKE2b-256 f6a149139720f9961ae9f73d356e72e309437c48ad3b223b3a7abb7ab8b08484

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 0ad35b8669c7e9eb827ab111aae8906728c1508c0e1a4cb650da1b32962ca572
MD5 618e54ab16fbd06737866b60cd3383b8
BLAKE2b-256 300ae3643ae9cd6d86b43d97051f3b5f7836b0e337e4b6c825f6c0208fbb0c1a

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 4088b6827a97bec9ae20e4c1c4fee359fb9c8d83c373b924de06569eca8d86c8
MD5 2feeefe0e7adbec817af69cd312cc227
BLAKE2b-256 8a5d4bf16c79acdb9c2d665b08716f53af91a13a740ef899e39311479847c38e

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 ef836dfef56aa90e8492b6f6d29ad7c54c34bd6ca8f6dead1c5fa30f4db74a13
MD5 c6fc05da41a79d508ff485f07d4f6cec
BLAKE2b-256 fdc89f2c3f71e79aab341dc1c78930de3b952cf6c47d07b4b14fbd1dd0dfb40a

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 71308929fe015857d567dd5f49eb12d08b212efa2550df82766b70db7912e015
MD5 ab06403fce3cc1c32490ef5cf0cf1276
BLAKE2b-256 e2de5711ba1b039f24e44254b9d2790020368f12a4749d0e2f5f82fbb830d404

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 4137058ca312cd4879c4149dfb3959e4ac8f190d772ca581e8d71bdd179f7e40
MD5 d6407d0ac6cd1d25defd568558baebcd
BLAKE2b-256 a7e5a3e339eb4989e7b4c49ee85b37704f0f13649fa48a02b9fbce09006dd2c7

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3d5fa2d96a887946a9d2c8a779593c7dceb87d16f56d5fdfe34d851561339e6c
MD5 3a77d66e13b4bffa66910b92b4bc507c
BLAKE2b-256 50a68dd6650e69edf8db4c5988de61c4896fbdfd594003a2ad66109ce64e2f02

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp311-cp311-win32.whl.

File metadata

  • Download URL: pysolnp-2025.10.17-cp311-cp311-win32.whl
  • Upload date:
  • Size: 172.7 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pysolnp-2025.10.17-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 44c079989ca1b4111c96e1358ee5000eb5c43619601b51721a0799d29da91bd6
MD5 76765f1b5db221e2255c81ffab2f58f7
BLAKE2b-256 c942f4bdb0276198f19ced530111d21bbcf29b0904d6ec57099688cb48f01c9f

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7db75be7a9e40a12460d4f6de3d57e8fb7fef56061d5f4625e9c56e1b944e568
MD5 09ef732987cc050030cb4e91219848b8
BLAKE2b-256 782480ea5b01159d3c36693ea5651a3985e3e1f3ef8e47b3960018e34f06a208

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 1d3acdc99212d2dc88200941167b275ea71c9be9bad6ac841b3c1a4f18c62eef
MD5 77b82daa16c702b56d5401d34616a607
BLAKE2b-256 ce870d806389ec41656a32c32cf5ef3852a39d67ee490554cfec183193262d70

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 17a0de0f40ec02c2165923aa3cb568c6167044f9e14cdaba629e7e83c1243e76
MD5 6fef77240ba4a6bfd64d967d96e90b4b
BLAKE2b-256 f9d37caa6fe1f96ba105d3a52979f2edb63a68410da94c04c1122149bf8bdf9c

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 7ac292f00bcdc373cbca8ee83746972175bfcf2f97a926ef468ae9ab9ae6c875
MD5 5a0249c2d5fa893e99d36ce6183ec492
BLAKE2b-256 8f316b95fc67f20238b5a4c820ea4228d79baefbc4f353f05c2ba3ff1dd630de

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 df389143d21c4640a4f8f474cf04355a018d525d2bd71a1df5493ed1b30373dd
MD5 1687e1d0f086c8f26747f7eaea31fab4
BLAKE2b-256 e04913463fb9d58a93b9fb648eeb10f3c4ebd2ec014b7ad88855f5f540431890

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8451722356bc75aa8bcb1e47ef279c43862e70e4bfc98ced90280695258355be
MD5 fe149ee9e523684c30a17f079f41dab8
BLAKE2b-256 e0729f2504f36ffedb4b196e394e8993c08e155b5a63d92e7d73806c32c32a15

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c6b4884956e96244bb83054c5ac246d0ec35f986f439453c2800e27f2d80ddc6
MD5 4c682d81517d8dacfcd1c56960782018
BLAKE2b-256 17e8d79b6eb81685fedb49b2d6635679933959af3cb20b3fb6d4f3b86907321a

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp310-cp310-win32.whl.

File metadata

  • Download URL: pysolnp-2025.10.17-cp310-cp310-win32.whl
  • Upload date:
  • Size: 168.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pysolnp-2025.10.17-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 983bd1a648b2439d3abc324c1d31cf63b943e336dc1feef7216ff6a3034b0e33
MD5 8c097016091668f9607432b2b93944cd
BLAKE2b-256 39a2ec6e4f35306da8e09922080fee089c0d973d3575d9bb94984e9d63dced44

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 323c8f6ed33464d0ce699b2a5a99167c1b371f2e4b0d1d2a0636fb7fc2d0353b
MD5 24129fe94e72528225dd14fd79f60a52
BLAKE2b-256 1f84b1f8f503cf3d2312f47e90292a95ca0602623476a0f42b9a1ed642486d6e

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 63e9fff22751975d0cdba8ab3e4d94f7a3635630a602484f8dda5c25ebbb86e0
MD5 ed739f7f0077de21cf402548e24e7b4f
BLAKE2b-256 6b67cad677c625a5f080c4e2e56c55e2ce39fcdb34b912e1f119002e04d419f6

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 156a5393b77654b5e64c20247cba1937bd2427be18ba3b8f2d5f135c586d9166
MD5 5240870b9a94358234006e889a562440
BLAKE2b-256 cdffbb4af728a4641a63d8572183d214bb150d2688984633cb6ee4d2600f32c5

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 bf51c87e2fbd9445b68e6629ba0a6cf17cc50cb00b83700e13f42949e3ebebf5
MD5 537aef349a3e0fa0301c4276c88b2a04
BLAKE2b-256 77c362e74ecfe112a0139010bfc4dc99aaaffadbbb2ecd5be6ba5d59572af645

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 300178fecfe8fce6c66d93d348a935cb356498078d161915626344a50605a412
MD5 4b9ce4ce9abfe05f55d355a5510bd971
BLAKE2b-256 58ca45eb652df462d21cf0afbc0d984362005caf8db2efbc5aa891bd2c3c25c1

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f06535b6e02ddb1613b322984be8ab56266c5249b34944ed2cd1b471c817cf0c
MD5 c12a926e7b6546d1da548e4cc7686881
BLAKE2b-256 d430c5d91f60b53f20afd84eccb65d24f717c3c1cca648024e8648bc1ab634f5

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pysolnp-2025.10.17-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 187.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pysolnp-2025.10.17-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 baa81c89d8d77bba7bbf43a618e41e6a0b542e145ceb31a734667305a3df62d4
MD5 f6f6ade6e7dadeb1c9f2858dd347c223
BLAKE2b-256 385909cdcbcc6f1a4e1d5d6106c517650f37515894d185b42bfb016b2e7d64ae

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp39-cp39-win32.whl.

File metadata

  • Download URL: pysolnp-2025.10.17-cp39-cp39-win32.whl
  • Upload date:
  • Size: 164.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pysolnp-2025.10.17-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 f4e125aa4e18e85f17443251d0a56b4b75a58415e176386c99e7d723d799f2dd
MD5 588bebe3a4f51f452287c31b9b9d74fb
BLAKE2b-256 e8861b325066d94b481c41ef635eab118e36961c64c9aa43a30274032bb621d3

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6f7025793105f0a08acfcd106b2580db8c0584f1261bd65ab0220188ed20fcab
MD5 f59b08afb45d9566c62c44f6f09b3db6
BLAKE2b-256 31a3e7a7478e5a0494c200919217ad425b70a21f693f4d0b596e4faf3a9e46b7

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 12ffc1fe24d209a1dfe140c93f3768c1f3e65d596760c28711d7b4e3910aaf43
MD5 0793ecc42925aa975502538bd0c01526
BLAKE2b-256 a4e47b30dad2714e3f116198c45b3864e269ab0fcf71b9c8d899e4fed1ae3540

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 d2e542cc674a0b6e58430d226cdb17d847ad8997e9322f1e1248b9ccdbdbb213
MD5 127a2eb4e1d33d8bd1bc8adb1006f148
BLAKE2b-256 3ffda92b0947c59964ff7613a8b6ebe106e442af66f3c9d4e736ab9f17b645cd

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 84b0c920704aabfb30643451e2fa2d9a6c69bea7aff1d96e580d4a55e2519708
MD5 193cbeb6a352be0c3f7e6e2d9c171c79
BLAKE2b-256 6eb4650cfed8a8e4460e79762552ed412139f398a0b1f385d9363c2392c7f2eb

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 69e06aecfb277f091bb718c5fc6f0f4e9ca2ff87ea3b3a55c1d04ae28658a439
MD5 9798f20678ea8abd40453b4b58e75494
BLAKE2b-256 479a329baef829b149204ea754bf9c5dc0908444054a62213f07456908108688

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d8167ce63d4feb125b94cf0b2e03d15d7b42f18bbdfa446a4ab988e18355d07b
MD5 fb89e2e1c4908359e07f0cd94328cd5a
BLAKE2b-256 208c859e11c9d488b52c39a936ab6e1422d2e263135057d1b8a3fb9c7fc39646

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pysolnp-2025.10.17-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 183.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pysolnp-2025.10.17-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9171e5e202219e2b8cd3cedfecaed9c6fc56d4aeefdd133481ef2077c69ed488
MD5 e7906f9e3b153fea5878c0dc5f1c4e89
BLAKE2b-256 0c8a77cf67eb532cd953b365878511f41f822b286916fb1adeee99e2c8418fa7

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp38-cp38-win32.whl.

File metadata

  • Download URL: pysolnp-2025.10.17-cp38-cp38-win32.whl
  • Upload date:
  • Size: 160.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pysolnp-2025.10.17-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 cc7b5a47201f02af4c943e2217d9c7fb978fdbce6813da7c8e6e1f16ae9b8654
MD5 93fcd1c58dbdee6cdd0902403d0d8471
BLAKE2b-256 bf430d01873af0de1854fab616ea412e9594ad0e1b219652929019eed8f93320

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 8dc51174e7b68188fd245023d2af9cc5e1b74af60d068932eb18d31676300c02
MD5 4549b6c23ceb83014dc75147e8541b6c
BLAKE2b-256 6625e0d82920a4547f11e08be2d087db6690a664a550475e70984325ee79cfeb

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 7677630690339d6a8ab46b47ef0b4650ab0b721f8177937bf947d0a1f449e9a9
MD5 a09153724183242d43e2416d9556d2ad
BLAKE2b-256 63e1f7b3903925ac00c70c20775cef21e393d69236b95c544544aac7c3361348

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 a6ab2a4f736ff01b42acf91147eae16d5521405e6ce55471d546dcd3a640c71b
MD5 2f88d7a221aba16ede6e86ce53006e5c
BLAKE2b-256 7789792a562c7b8641934cd7f105063caa39756d10c2b577a6f398d0489fe748

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 2bf81a0efa4cc61241613ca9a7f643de1f545ac7485c1eab48cb3836896da75c
MD5 c95cb5193927e2756dab21175f34a3af
BLAKE2b-256 315548e1788cd45cea4241e97dbf550352219596680d9660a196a194b0bd82f9

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e9b0bd8122aef7108a56dbf2a22df754ca83593464a14cbdace55edfc4af192e
MD5 bf509795d9504a60dd5c833821ce8302
BLAKE2b-256 d549330e984c31c4ad57eb42c6d320978dc427f30bc8b9da5e9b37994bb6d8e8

See more details on using hashes here.

File details

Details for the file pysolnp-2025.10.17-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pysolnp-2025.10.17-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a2e60737c5d60e1e743e4c7348a11f49cae4279c682b868459180694b94fafab
MD5 7aaefb5ece12c0a935a8d3a79fc5f470
BLAKE2b-256 1322b7500fb0bae166c116bdd611c6fff484541b9b25f13bc8a8ef80749354bc

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page