This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description

pysqldf allows you to query pandas DataFrames using SQL syntax. It works similarly to sqldf in R. pysqldf seeks to provide a more familiar way of manipulating and cleaning data for people new to Python or pandas.

Installation

$ pip install pysqldf

Basics

The main class in pysqldf is SQLDF. SQLDF accepts 1 enviroment variable sets or more parametrs in constructor. - an set of session/environment variables (dictionary of valiables, locals() or globals()) - temporary file type - user defined functions - user defined aggregate functions

pysqldf uses SQLite syntax. Any convertable data to pandas DataFrames will be automatically detected by pysqldf. You can query them as you would any regular SQL table.

$ python
>>> from pysqldf import SQLDF, load_meat, load_births
>>> sqldf = SQLDF(globals())
>>> meat = load_meat()
>>> births = load_births()
>>> print sqldf.execute("SELECT * FROM meat LIMIT 10;").head()
                  date  beef  veal  pork  lamb_and_mutton broilers other_chicken turkey
0  1944-01-01 00:00:00   751    85  1280               89     None          None   None
1  1944-02-01 00:00:00   713    77  1169               72     None          None   None
2  1944-03-01 00:00:00   741    90  1128               75     None          None   None
3  1944-04-01 00:00:00   650    89   978               66     None          None   None
4  1944-05-01 00:00:00   681   106  1029               78     None          None   None

>>> q = "SELECT m.date, m.beef, b.births FROM meat m INNER JOIN births b ON m.date = b.date;"
>>> print sqldf.execute(q).head()
                    date    beef  births
403  2012-07-01 00:00:00  2200.8  368450
404  2012-08-01 00:00:00  2367.5  359554
405  2012-09-01 00:00:00  2016.0  361922
406  2012-10-01 00:00:00  2343.7  347625
407  2012-11-01 00:00:00  2206.6  320195

>>> q = "SELECT strftime('%Y', date) AS year, SUM(beef) AS beef_total FROM meat GROUP BY year;"
>>> print sqldf.execute(q).head()
   year  beef_total
0  1944        8801
1  1945        9936
2  1946        9010
3  1947       10096
4  1948        8766

user defined functions and user defined aggregate functions also supported.

$ python
>>> from pysqldf import SQLDF, load_iris
>>> import math
>>> import numpy
>>> ceil = lambda x: math.ceil(x)
>>> udfs = { "ceil": lambda x: math.ceil(x) }
>>> udafs = { "variance": lambda values: numpy.var(values) }
>>> # or you can also define aggregation function as class
>>> # class variance(object):
... #     def __init__(self):
... #         self.a = []
... #     def step(self, x):
... #         self.a.append(x)
... #     def finalize(self):
... #         return numpy.var(self.a)
...
>>> # udafs={ "variance": variance }
>>> iris = load_iris()
>>> sqldf = SQLDF(globals(), udfs=udfs, udafs=udafs)
>>> sqldf.execute("""
    SELECT
        ceil(sepal_length) AS sepal_length,
        ceil(sepal_width) AS sepal_width,
        ceil(petal_length) AS petal_length,
        ceil(petal_width) AS petal_width,
        species
    FROM iris;
    """).head()
   sepal_length  sepal_width  petal_length  petal_width      species
0             6            4             2            1  Iris-setosa
1             5            3             2            1  Iris-setosa
2             5            4             2            1  Iris-setosa
3             5            4             2            1  Iris-setosa
4             5            4             2            1  Iris-setosa
>>> sqldf.execute("SELECT species, variance(sepal_width) AS var FROM iris GROUP BY species;")
           species       var
0      Iris-setosa  0.142276
1  Iris-versicolor  0.096500
2   Iris-virginica  0.101924

Documents

SQLDF(env, inmemory=True, udfs={}, udafs={})

env: variable mapping dictionary of sql executed enviroment. key is sql variable name and value is your program variable. locals() or globals() is used for simple assign.

inmemory: sqlite db option.

udfs: dictionary of user defined functions. dictionary key is function name, dictionary value is function. see sqlite3 document

udafs: dictionary of user defined aggregate functions. dictionary key is function name, dictionary value is aggregate function or class. If value is function, function gets one argument that is list of column values and it should return aggregated a value. Another case(value is class), see sqlite3 document.

load_iris(), load_meat(), load_births()

load example DataFrame data.

Release History

Release History

1.2.3

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

1.2.2

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

1.2.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

1.2.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

1.1.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

1.0.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
pysqldf-1.2.3-py2.py3-none-any.whl (27.4 kB) Copy SHA256 Checksum SHA256 py2.py3 Wheel Oct 13, 2015
pysqldf-1.2.3.tar.gz (30.8 kB) Copy SHA256 Checksum SHA256 Source Oct 13, 2015

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting