Skip to main content

Image registration tool (python implementation of the ImageJ/FIJI Plugin TurboReg/StackReg)

Project description

pyStackReg

Build & Test Documentation Status PyPI Package latest release Supported Python Versions Downloads

Summary

Python/C++ port of the ImageJ extension TurboReg/StackReg written by Philippe Thevenaz/EPFL.

A python extension for the automatic alignment of a source image or a stack (movie) to a target image/reference frame.

Description

pyStackReg is used to align (register) one or more images to a common reference image, as is required usually in time-resolved fluorescence or wide-field microscopy. It is directly ported from the source code of the ImageJ plugin TurboReg and provides additionally the functionality of the ImageJ plugin StackReg, both of which were written by Philippe Thevenaz/EPFL (available at http://bigwww.epfl.ch/thevenaz/turboreg/).

pyStackReg provides the following five types of distortion:

  • translation

  • rigid body (translation + rotation)

  • scaled rotation (translation + rotation + scaling)

  • affine (translation + rotation + scaling + shearing)

  • bilinear (non-linear transformation; does not preserve straight lines)

pyStackReg supports the full functionality of StackReg plus some additional options, e.g., using different reference images and having access to the actual transformation matrices (please see the examples below). Note that pyStackReg uses the high quality (i.e. high accuracy) mode of TurboReg that uses cubic spline interpolation for transformation.

Please note: The bilinear transformation cannot be propagated, as a combination of bilinear transformations does not generally result in a bilinear transformation. Therefore, stack registration/transform functions won’t work with bilinear transformation when using “previous” image as reference image. You can either use another reference (“first” or “mean” for first or mean image, respectively), or try to register/transform each image of the stack separately to its respective previous image (and use the already transformed previous image as reference for the next image).

Known issues

Installation

The package is available on conda forge and on PyPi.

  • Install using conda

conda install pystackreg -c conda-forge
  • Install using pip

pip install pystackreg

Documentation

The documentation can be found on readthedocs:

https://pystackreg.readthedocs.io/

Tutorial

Usage

The following example opens two different files and registers them using all different possible transformations

from pystackreg import StackReg
from skimage import io

#load reference and "moved" image
ref = io.imread('some_original_image.tif')
mov = io.imread('some_changed_image.tif')

#Translational transformation
sr = StackReg(StackReg.TRANSLATION)
out_tra = sr.register_transform(ref, mov)

#Rigid Body transformation
sr = StackReg(StackReg.RIGID_BODY)
out_rot = sr.register_transform(ref, mov)

#Scaled Rotation transformation
sr = StackReg(StackReg.SCALED_ROTATION)
out_sca = sr.register_transform(ref, mov)

#Affine transformation
sr = StackReg(StackReg.AFFINE)
out_aff = sr.register_transform(ref, mov)

#Bilinear transformation
sr = StackReg(StackReg.BILINEAR)
out_bil = sr.register_transform(ref, mov)

The next example shows how to separate registration from transformation (e.g., to register in one color channel and then use that information to transform another color channel):

from pystackreg import StackReg
from skimage import io

img0 = io.imread('some_multiframe_image.tif')
img1 = io.imread('another_multiframe_image.tif')
# img0.shape: frames x width x height (3D)

sr = StackReg(StackReg.RIGID_BODY)

# register 2nd image to 1st
sr.register(img0[0, :, :], img0[1,:,:])

# use the transformation from the above registration to register another frame
out = sr.transform(img1[1,:,:])

The next examples shows how to register and transform a whole stack:

from pystackreg import StackReg
from skimage import io

img0 = io.imread('some_multiframe_image.tif') # 3 dimensions : frames x width x height

sr = StackReg(StackReg.RIGID_BODY)

# register each frame to the previous (already registered) one
# this is what the original StackReg ImageJ plugin uses
out_previous = sr.register_transform_stack(img0, reference='previous')

# register to first image
out_first = sr.register_transform_stack(img0, reference='first')

# register to mean image
out_mean = sr.register_transform_stack(img0, reference='mean')

# register to mean of first 10 images
out_first10 = sr.register_transform_stack(img0, reference='first', n_frames=10)

# calculate a moving average of 10 images, then register the moving average to the mean of
# the first 10 images and transform the original image (not the moving average)
out_moving10 = sr.register_transform_stack(img0, reference='first', n_frames=10, moving_average = 10)

The next example shows how to separate registration from transformation for a stack (e.g., to register in one color channel and then use that information to transform another color channel):

from pystackreg import StackReg
from skimage import io

img0 = io.imread('some_multiframe_image.tif') # 3 dimensions : frames x width x height
img1 = io.imread('another_multiframe_image.tif') # same shape as img0

# both stacks must have the same shape
assert img0.shape == img1.shape

sr = StackReg(StackReg.RIGID_BODY)

# register each frame to the previous (already registered) one
# this is what the original StackReg ImageJ plugin uses
tmats = sr.register_stack(img0, reference='previous')
out = sr.transform_stack(img1)

# tmats contains the transformation matrices -> they can be saved
# and loaded at another time
import numpy as np
np.save('transformation_matrices.npy', tmats)

tmats_loaded = np.load('transformation_matrices.npy')

# make sure you use the correct transformation here!
sr = StackReg(StackReg.RIGID_BODY)

# transform stack using the tmats loaded from file
sr.transform_stack(img1, tmats=tmats_loaded)

# with the transformation matrices at hand you can also
# use the transformation algorithms from other packages:
from skimage import transform as tf

out = np.zeros(img0.shape).astype(np.float)

for i in range(tmats.shape[0]):
    out[i, :, :] = tf.warp(img1[i, :, :], tmats[i, :, :], order=3)

Author information

This is a port of the original Java code by Philippe Thevenaz to C++ with a Python wrapper around it. All credit goes to the original author:

/*====================================================================
| Philippe Thevenaz
| EPFL/STI/IMT/LIB/BM.4.137
| Station 17
| CH-1015 Lausanne VD
| Switzerland
|
| phone (CET): +41(21)693.51.61
| fax: +41(21)693.37.01
| RFC-822: philippe.thevenaz@epfl.ch
| X-400: /C=ch/A=400net/P=switch/O=epfl/S=thevenaz/G=philippe/
| URL: http://bigwww.epfl.ch/
\===================================================================*/

/*====================================================================
| This work is based on the following paper:
|
| P. Thevenaz, U.E. Ruttimann, M. Unser
| A Pyramid Approach to Subpixel Registration Based on Intensity
| IEEE Transactions on Image Processing
| vol. 7, no. 1, pp. 27-41, January 1998.
|
| This paper is available on-line at
| http://bigwww.epfl.ch/publications/thevenaz9801.html
|
| Other relevant on-line publications are available at
| http://bigwww.epfl.ch/publications/
\===================================================================*/

License

You are free to use this software for commercial and non-commercial
purposes. However, we expect you to include a citation or acknowledgement
whenever you present or publish research results that are based
on this software. You are free to modify this software or derive
works from it, but you are only allowed to distribute it under the
same terms as this license specifies. Additionally, you must include
a reference to the research paper above in all software and works
derived from this software.

Changelog

0.2.8

Fixed

  • Add NumPy 2 support

0.2.7

Fixed

  • Axis argument not used for method “mean” in register_stack() (PR #26)

0.2.6

Added

  • Exposing simple_slice and running_mean functions in the util package

  • Added conversion function to any integer dtype

0.2.5

Fixed

  • Compilation in environments without NumPy

0.2.3

Added

  • Added example data and tutorial notebook

  • Added unit tests

  • Additional documentation

  • Detection of time series axis in stacks – will raise a warning if supplied axis in stack registration does not correspond to the detected axis

Changed …..~~ - progress_callback function now gets called with the iteration number, not the iteration index (iteration number = iteration index + 1)

Fixed

  • Fixed exception when using a different axis than 0 for registering stacks

0.2.2

Changed …..~~ - License changed to allow distribution on Python package repositories

0.2.1

Added

  • Progress callback function can be supplied to register_stack() and register_transform_stack() functions via the progress_callback parameter. It is called after every iteration (i.e., after each image registration).

Changed …..~~ - Progress bar output is not shown by default, has to be enabled by using the verbose=True parameter in the register_stack() and register_transform_stack() functions

0.2.0

Added

  • Bilinear transformation

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pystackreg-0.2.8.tar.gz (3.7 MB view details)

Uploaded Source

Built Distributions

pystackreg-0.2.8-cp313-cp313-win_amd64.whl (64.7 kB view details)

Uploaded CPython 3.13 Windows x86-64

pystackreg-0.2.8-cp313-cp313-win32.whl (56.0 kB view details)

Uploaded CPython 3.13 Windows x86

pystackreg-0.2.8-cp313-cp313-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

pystackreg-0.2.8-cp313-cp313-musllinux_1_2_i686.whl (1.8 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

pystackreg-0.2.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (843.5 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

pystackreg-0.2.8-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (825.1 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pystackreg-0.2.8-cp313-cp313-macosx_11_0_arm64.whl (71.8 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

pystackreg-0.2.8-cp312-cp312-win_amd64.whl (64.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

pystackreg-0.2.8-cp312-cp312-win32.whl (56.0 kB view details)

Uploaded CPython 3.12 Windows x86

pystackreg-0.2.8-cp312-cp312-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

pystackreg-0.2.8-cp312-cp312-musllinux_1_2_i686.whl (1.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

pystackreg-0.2.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (843.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pystackreg-0.2.8-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (825.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pystackreg-0.2.8-cp312-cp312-macosx_11_0_arm64.whl (71.8 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pystackreg-0.2.8-cp311-cp311-win_amd64.whl (64.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

pystackreg-0.2.8-cp311-cp311-win32.whl (55.9 kB view details)

Uploaded CPython 3.11 Windows x86

pystackreg-0.2.8-cp311-cp311-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

pystackreg-0.2.8-cp311-cp311-musllinux_1_2_i686.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

pystackreg-0.2.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (843.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pystackreg-0.2.8-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (825.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pystackreg-0.2.8-cp311-cp311-macosx_11_0_arm64.whl (71.8 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pystackreg-0.2.8-cp310-cp310-win_amd64.whl (64.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

pystackreg-0.2.8-cp310-cp310-win32.whl (55.9 kB view details)

Uploaded CPython 3.10 Windows x86

pystackreg-0.2.8-cp310-cp310-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

pystackreg-0.2.8-cp310-cp310-musllinux_1_2_i686.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

pystackreg-0.2.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (843.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pystackreg-0.2.8-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (824.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pystackreg-0.2.8-cp310-cp310-macosx_11_0_arm64.whl (71.8 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pystackreg-0.2.8-cp39-cp39-win_amd64.whl (64.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

pystackreg-0.2.8-cp39-cp39-win32.whl (55.9 kB view details)

Uploaded CPython 3.9 Windows x86

pystackreg-0.2.8-cp39-cp39-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

pystackreg-0.2.8-cp39-cp39-musllinux_1_2_i686.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

pystackreg-0.2.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (842.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pystackreg-0.2.8-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (824.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pystackreg-0.2.8-cp39-cp39-macosx_11_0_arm64.whl (71.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pystackreg-0.2.8-cp38-cp38-win_amd64.whl (64.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

pystackreg-0.2.8-cp38-cp38-win32.whl (55.8 kB view details)

Uploaded CPython 3.8 Windows x86

pystackreg-0.2.8-cp38-cp38-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

pystackreg-0.2.8-cp38-cp38-musllinux_1_2_i686.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

pystackreg-0.2.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (843.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pystackreg-0.2.8-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (825.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pystackreg-0.2.8-cp38-cp38-macosx_11_0_arm64.whl (71.6 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pystackreg-0.2.8-cp37-cp37m-win_amd64.whl (64.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

pystackreg-0.2.8-cp37-cp37m-win32.whl (55.7 kB view details)

Uploaded CPython 3.7m Windows x86

pystackreg-0.2.8-cp37-cp37m-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

pystackreg-0.2.8-cp37-cp37m-musllinux_1_2_i686.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ i686

pystackreg-0.2.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (842.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pystackreg-0.2.8-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (824.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pystackreg-0.2.8-cp36-cp36m-win_amd64.whl (66.0 kB view details)

Uploaded CPython 3.6m Windows x86-64

pystackreg-0.2.8-cp36-cp36m-win32.whl (57.6 kB view details)

Uploaded CPython 3.6m Windows x86

pystackreg-0.2.8-cp36-cp36m-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.2+ x86-64

pystackreg-0.2.8-cp36-cp36m-musllinux_1_2_i686.whl (1.8 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.2+ i686

pystackreg-0.2.8-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (844.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pystackreg-0.2.8-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (826.8 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

File details

Details for the file pystackreg-0.2.8.tar.gz.

File metadata

  • Download URL: pystackreg-0.2.8.tar.gz
  • Upload date:
  • Size: 3.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for pystackreg-0.2.8.tar.gz
Algorithm Hash digest
SHA256 fb615e9fb791298a196f7468cf0d2db1d5a008cde58d74c71afc2acb6a092dfc
MD5 d37c56a451df6b7b96aecc12e981868a
BLAKE2b-256 7a1517cbdce2348da6a0127816dc6380fc9b8343baea96ed959ee8460f2bc25a

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 a48da1c2ecdc440b56baed71ebe079fffb33cf4992d6a4b74af0e8c37b9e622e
MD5 909df6266fc07b3471b8e4fcd369fa49
BLAKE2b-256 d2581a1cea43ed6f3d974ec56f8da1edcc0609bae12ab31d31d0486ffb2eded2

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp313-cp313-win32.whl.

File metadata

  • Download URL: pystackreg-0.2.8-cp313-cp313-win32.whl
  • Upload date:
  • Size: 56.0 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for pystackreg-0.2.8-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 38b169dd5731e390e36bd6fefe50a8bda6c61a7a820822e2f5eef80c27560a64
MD5 f785452085ac42da441cc80d34b64851
BLAKE2b-256 0f463466c441f4480ecc0226b1ea15325a339b3b9d6249cd61ba5c35af2875df

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 07b67ade9ff2dde1357b8bccd524ea521199566a07b4386958fb7430688ff021
MD5 02a10e3dd4c17ca407d521be0d475ed7
BLAKE2b-256 e7eb8a323223f05253b8480d443d3ee454a77f63b14f249bf7443fa55292ec14

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 48003e24e87e26da2d71d9b7ad0172fec0fd6306332f9853eac0073740100b98
MD5 836a3e6cdee20187817997077d85f42a
BLAKE2b-256 05da4cde89bf62861ab42f116b66a4a3a88acedaa4842e679f40c0026195e005

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 adbcded9a9697556a7239160e9ae836e574e7f5ccff4bcbba1838ebb1f50735b
MD5 c70996f3dc09e85ff73bf321b99aa824
BLAKE2b-256 55bd4937538906aecf30f1d66ce9fe5f624845f03dd856fd5fd59aa5bba15f37

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 dbfc206d546f36d373bd6c9b4800fdefb063c2f9f54664059d41139dd77c98f7
MD5 6b6496f5f187aa559a1cbf81331f602d
BLAKE2b-256 794cab157ed4971a1332e1f9b38052edcc50845a588688ee3aa902af21a3686f

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3c7c146dfccbc70d8f4f2210f4ded28290a48704b9cdec812ae9f19896f0ebe9
MD5 83ea422228d42802846dd8d77160cdfb
BLAKE2b-256 b41194c4d9b025b4606133ab76ba31bbba529530bbca38e66c485c6bdd1c4da4

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 0e7cb59bcf9f667a4988fdaa166442422188f01913d74b8eb7edc44215e838e7
MD5 7ab9c4a019fd093df8ee85543d854c8d
BLAKE2b-256 6f3f204aca0da3fe0221365618979527096ad55bdc708a3def3e09551d5c4ffe

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp312-cp312-win32.whl.

File metadata

  • Download URL: pystackreg-0.2.8-cp312-cp312-win32.whl
  • Upload date:
  • Size: 56.0 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for pystackreg-0.2.8-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 bb1a541297d595604e02c545c96d8fd71d3592ac16e7d56ddca48aac427ba201
MD5 e7aa9bc328c9238040f1ea08100d2013
BLAKE2b-256 bb03119ad7c9538846b093ebffa30c6c128b4f1f5a4ac97409f5a123d61767bb

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 13ca10ddae376e42bef7bacfc898db9766e16b7bb3ca4e9e41d83e1eef0527fd
MD5 a752f1be74462f928167d36073a08f52
BLAKE2b-256 9e7beef105cec19d266893fcff2727fd2206a110275256f659a303ad7d19a52e

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 13647efcb5d87a290a8ba4ee27fa2094fd2213369efd4755b43df244a0a27e32
MD5 a530709c2eccadd89bd6e0fd8a4241ba
BLAKE2b-256 47fb3d1abc7cca039a2bddc2e868a0efa7d10461611161ad828f3f093f94f802

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 83242b0fd0353d2598f381cf8677956d527b01f613309c2ccc7a99b7288f88e3
MD5 662de3626d2c7bcc155616f898eb2f10
BLAKE2b-256 9d64696c92593465defd31eee1a9ad5d08d008d52efdec7623735cd750e69452

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e549326568456886c7b908068a85fc87de13f4b042af0e92a8fa1a20646d0f12
MD5 3226ca498ae7dab650cc5b6a773f286a
BLAKE2b-256 6429e2520896fb6b333eca35512bc6cbbf7a60e23e2a9c196891d1c46952dbee

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cc82203cde0a1909180d0ab7067071ac13d9558632f602ca72cce40415a3f339
MD5 aac1190e1db6b0e5d65cd1c4e8acd43a
BLAKE2b-256 c1005d8ddccbddc28871f40b5c84b55e121dac836e5efa407c11d3a00002e85d

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 06e90e69d9aca4a68af532f9128258796acf46e0305dea03b36926e933d15837
MD5 8457f588236f72f191e5d50468927dd4
BLAKE2b-256 aa99f4e2ade75ad9a26883dad213a512b4bfaf06f0bb985aaba538f361e85af6

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp311-cp311-win32.whl.

File metadata

  • Download URL: pystackreg-0.2.8-cp311-cp311-win32.whl
  • Upload date:
  • Size: 55.9 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for pystackreg-0.2.8-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 42336a4b6daf0caa5dc7e774cbafbc91a7a3a5e56797a4f16ace0fd740f934f3
MD5 51981337e526c8a67a6db53a6cca0f4c
BLAKE2b-256 59a670f60dda166e51fc6f3f91d3ecb8e90dd2e929ff8f26fb74797b7cb0446e

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 760dafe1efac42d2f243da37b296d6dd7e1df071c967abb292a921b0db7c9faa
MD5 99f19e12a4587736b05762b4eec68793
BLAKE2b-256 cb6b8d6f7971d24f2cfe55bcb4a25f545af0715f7cb8482c3f79a12bc7d236df

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 c4948e38394898d7fdb1f481c328a25876299db98c99e0b3263b50730bf17691
MD5 01be32de1fc316021c8a852a9ea1c0d2
BLAKE2b-256 beddc607d9ad45591ae87db4c08759a6c744dd55edf0f2ceeae72f8ee8fc8ce2

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 122cdf491fed5b5bf9620546d7c7b84f002aa6bd98322e07a6ca1761bbb10889
MD5 39438d23f757bc86f242183e47c3cb02
BLAKE2b-256 c4d4b10d1219b94576c25c8f7a631c7cfb59fbfcc22ddeae36a668a356650f79

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ca37b157087211df15f8811d9e2553b100b1082de152601aa6f2f956c1d9343c
MD5 4e55d54fc1147bfb751fe59825d0f9b1
BLAKE2b-256 e0d1340d7ba6c25e6786943324b9e578e7daf1e00423889ef6032fd2931963cf

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 49cb45a0be374bd36a7d1d3d561b3c0d456f105d339b79c2bfa4b6c297ab4a1f
MD5 393690c6124b0c6793e70d45ed7b8236
BLAKE2b-256 54a514d309bec71b4e44a4b3fb26486bcef9998adadb85eea58b02d40f5b4175

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 73b36bb7ec18a860429a53895b46da1d013139d6906c1d5efa806c65570d8c36
MD5 21ad7fb7af97f3e41cb0e8ca913116fd
BLAKE2b-256 5d2d62b6f428805e467dced7dfeb96ffca17820a9ca4efe87ef1a8fbe6ef9586

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp310-cp310-win32.whl.

File metadata

  • Download URL: pystackreg-0.2.8-cp310-cp310-win32.whl
  • Upload date:
  • Size: 55.9 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for pystackreg-0.2.8-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 dc6823065f0e8279e3bd416338c4342f8677e952c8e49155989b6dc75bbd60ee
MD5 2aaf79c92a353e2480d443e6d9f323a6
BLAKE2b-256 ed5e454bcb4a538793013a8dd970005984d451ee1ea11cd7c096e730ed4684b1

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 47d577a5237937d8bd1c1d9d64f2cb71cc1a07789f04f6b479bab8d826d55e23
MD5 5c11bd9934cd38bf2806bd0ecf974b6a
BLAKE2b-256 ba7564fde44dcecafc21cd9e6de37d1079e882ae80b0087da246f4e128bdef8d

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 77d3d3d8e732a9b43f175dafebd63842f5c2bb2f1ea9d09c211397fb6a68b7d5
MD5 7e9c94674581a5105d45f95a838100f0
BLAKE2b-256 ce7b68717f418ffb5cc27b78f539646aec705e3373a86823f5e1b136885b39e8

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ecb92e9291c45a58fa9352a8769af748ea25bc3b01966a4e9fefa3a0858e0934
MD5 e054d747780a3c9ec1e190b45bff3f03
BLAKE2b-256 d792179515c6cb59c60f6d5d01d3d323a45763bdfcd34f481951e971992c6a10

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bde44c404ad81082eef09e6285e8e93199710489e1ef63e5d28f7286974a2ab4
MD5 9769bcd1fe986fdf3f88d81873596ee8
BLAKE2b-256 f1ce11d0993acc99f6945046bdc3653873a6ac961e427a0f369f248eb591cd8a

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e90d5cda748d774a27dbd8c0c124f9671636e79873789a6ba6f39a6b4da91dc1
MD5 ab56fd754c0536bedc582ee951226aca
BLAKE2b-256 51ef747993408cce9b22cb815be68a38a0d4404694ffee1786c6a30af0394623

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cfbbd4830db9d414c00e94822ac059b28e831767b231474f5fe3383b2e2edc6c
MD5 3b80d5b1345b68c42ef9b59a4de6661b
BLAKE2b-256 29e52a94f6510ec53d845359dccabc8faa89db82a95a01251f358152ae9f629c

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp39-cp39-win32.whl.

File metadata

  • Download URL: pystackreg-0.2.8-cp39-cp39-win32.whl
  • Upload date:
  • Size: 55.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for pystackreg-0.2.8-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 e8763f0f4b141df473f82a35213875e8364e2a5eaa36a91b3c2b7debe7149062
MD5 9b2c524bf6fe9919ae945b69f27cd7b9
BLAKE2b-256 3366210ab2ac74a7a4a0cea7184c98021805913091dc0ce03db91d99c3c12518

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 bb7dcfe51e1f89c19b83a8ee356a56e0db8ac70178a6512671891302ac6e268a
MD5 a88c8f00ec342ea3fb2029dea5269b93
BLAKE2b-256 033cc7fbf207ae6410b15477eafa20ffd2fb6a24255b74310d89a9e43292fbf7

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 e676a3b5300addb798d646749057833df87f1eb44d46d4aca45b5724a72bc644
MD5 3c4ee6b534d79f6892fbe9db6de1c0ef
BLAKE2b-256 7a877352f880748d25d19e9f0ff4c0c2a76f769996a55bb35af318c1b2fde516

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c3b9d7568fde7c620643c9fb83feb74111f3779a9f1961c5c90c0ec8495a0fff
MD5 ebb4c025e745bacfd5600a93fec5f2ed
BLAKE2b-256 20dc742454202e004ec99dd30f34e0cf4594df21a3e8c2487087472b25d739a0

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6fbc7f6cda9cb0f4ba4f2b254ce19eaefdaa9a53c31ba733ab788e16dda41e78
MD5 0e8b3ec943414802b3f3eba3edc0d26c
BLAKE2b-256 2db27411d429d04cd4f6593efd50894becfc88b1f2284c76e31def10b80b7551

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1f9e0474149be1866d1d834b61c4c022040f457fcc3b2226c7c25b81d148cba4
MD5 ce22c63e145654d02b1bcd7bf0f6afb3
BLAKE2b-256 7b0bcd554712b96d8eb465ceb550a7c5599f0213d291cadc9cf3708283287aef

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8b637a7a6984192abb348fd09568eb5abf0999eb3f8c5d04e6cd291a9e956edf
MD5 836d91c79f995d58caf5ad1e92ca8c2e
BLAKE2b-256 ec832656329bf7c90255300d69c81460c62170fd50aa8a611a65ba316bd0fe12

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp38-cp38-win32.whl.

File metadata

  • Download URL: pystackreg-0.2.8-cp38-cp38-win32.whl
  • Upload date:
  • Size: 55.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for pystackreg-0.2.8-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 47d1c17e5f9524ad7eeb5969faf1761ae6fa137c72268ac3668df3e5ffcfad8d
MD5 6328fd5ca1e494248e63814ae62c1f71
BLAKE2b-256 ff1a45f1c6cf0ba54dd8288de50d0a8c831c41d0165596f89b3b63266df7deb8

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 eea688ffc129831baf60f12c72fb232c0a007d26a7ecc39b1b493ed6a9e03515
MD5 184eb2d8bac3d050f096fb44be0ec559
BLAKE2b-256 c25595ebc6984d54e46ccd68668e03c64f6d557b5aa89816b55929f73e5e9e8e

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 52653fa7e843cfadb217d23f587c278caace2d09017423f52f6bf9829d0d8a6c
MD5 c2a0170cc8c853f4c603317e69a374aa
BLAKE2b-256 8ebc1a1ba1888178436f7d8759dbb92e5bbb11ccbdd96cf69789a3c506220588

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 883468ecdee6c83281f17b8ac69612ee16c557398724e546861823e3ba62f64e
MD5 39495203f49709d9b60f58aab1fef6b1
BLAKE2b-256 a085a82538c36e571d7cc21ea7344378556c8a9756342bdfd28b59e17441ddf6

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8142d68efcb46baa1045a90ddf70d08d1f4d9f74f0bbfa095af8f80ffcb0cc6c
MD5 6de6b5cbd6d8211a6ffc1afd0b8c1e49
BLAKE2b-256 ff8861c85e03e465eb409584c233297d2d89a5d92c7f8092d8ee5a6639659ef9

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4b8f71f8a6f075d7b9b92d98b1bbcce522b7efe44d186e6a325d837e1f657e59
MD5 c5f39c7cfef4a81844b2d2214ca0f841
BLAKE2b-256 00b984d9c8e5afc1cf791adc1191c84d1ff4208b59d070c1ab385119a6f9ea30

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a19790d6efd072d90bb79662dea744174e97fd858b6414177ec6be3e06c3f068
MD5 161a15edf4264d45762479cd4ecb5798
BLAKE2b-256 457e7497f7c972e997e66d631afc6b9b3b9060508174c0bf4b24b5f4a3de3dfb

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pystackreg-0.2.8-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 55.7 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for pystackreg-0.2.8-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 4880052a54e1249fb5344be864929548e50ab2c5a1bac3e3e609d0bf90836221
MD5 7ed32aa58c932795606899ce7370f32f
BLAKE2b-256 d44f056361d6f6cd614c4a375650fdeb5a17411c86680562f6e185accac50f99

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 575ec2868aea11e82b3f7abea4095f608cccc123ce0a7eedc180081fb2069fdd
MD5 fa1ae6f522da5af223921e34888281ca
BLAKE2b-256 4c8155be245d8c954bbed33eadad02057c7cf3f62dbd084573c3dd699c551e81

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp37-cp37m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp37-cp37m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 34f0a99cc0dee0a03506ba859a0480cd9a08042419be39c64986acc0b5d68ecb
MD5 c4d49fca4c3852a4243e9c36b1843393
BLAKE2b-256 97d30136575169c25075542b94696c9bed6a3462dda11acead27f9904d8e20dd

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 22fa34950db791a43a786901a16740053ba6e2afa7c7aa54ae165dc3ba2805ff
MD5 f28360e312d83fcccca22afce6ae4591
BLAKE2b-256 adde439440c6e69d6ec44dddce3b2ffb176eaf0634a25b4f7b4285888be95a15

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4c31ef4e75bb862bf84d32b7f534727ef370482555d699762211431dc57e6a6b
MD5 a6004b7e3ba0be28a3cfe8b5104de770
BLAKE2b-256 9f114db3111586f9087c3a3d0e8611270bcad1514cad90bfd8c93d43f0849181

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 617a616d417372a61bb47ddad982cf34d08cfce75db519726bb06ad448bd3481
MD5 befce4ac717a12d3fe01a83eb6008b0c
BLAKE2b-256 2d3d0eec52ee286696da22f4fc1fd2f58ab0008f68fcae039545b60952b336b0

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp36-cp36m-win32.whl.

File metadata

  • Download URL: pystackreg-0.2.8-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 57.6 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for pystackreg-0.2.8-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 63622cbd0eee468088987070bac05c3800244a168e05aab26d81b768493aeb4e
MD5 be811a24760d94f05e86309fdc4b4a6f
BLAKE2b-256 a9e5369d90a545ace4181007334291e6d2bcf8ebc92fe948cd244cde62197793

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp36-cp36m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp36-cp36m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f7906205f38cb0ebbf644e0804c1cc0176b4954c7731681cc3a8d9b48e72a72d
MD5 b412fdc7d77bd2f45c1d4119c299d18e
BLAKE2b-256 055c40b906a09c284ecd386b04d4793d9a689efcacba43c5ef7e3a96c7b697b8

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp36-cp36m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp36-cp36m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 ed4a761cbd91adf2dca9e35ad5bb7b887f7986338f6de926d55850ab1ecbf5f7
MD5 9a8b24d48c8e00995c5e4d0213cd03e7
BLAKE2b-256 80b3512556c980ac62e050ae90b806f904e31fb12ada89f9361b13315398dd16

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b8eb17ceb1d8c17297b6d933a7947cefc28f3a3b0211627bbde95507098914a8
MD5 180df0bc34b5d2d25528d4e3b0e01077
BLAKE2b-256 e2252f3d00e93759db2cd8e979eec23e8c5d850eea7a9843cecb4065ad8a14bf

See more details on using hashes here.

File details

Details for the file pystackreg-0.2.8-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pystackreg-0.2.8-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5a4afad67d55b69d2b9cf26f67b8b406b4932615a7300210075abe941852c63a
MD5 68df88177f50ce69f3f086c9036cf0bd
BLAKE2b-256 5cdf11fd3358a38aed06a201fe310a5e35b609a8b9c1d0ffa764681597d1b609

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page