Skip to main content

pytest plugin to run the tests with support of pyspark.

Project description

pytest plugin to run the tests with support of pyspark (Apache Spark).

This plugin will allow to specify SPARK_HOME directory in pytest.ini and thus to make “pyspark” importable in your tests which are executed by pytest.

You can also define “spark_options” in pytest.ini to customize pyspark, including “spark.jars.packages” option which allows to load external libraries (e.g. “com.databricks:spark-xml”).

pytest-spark provides session scope fixtures spark_context and spark_session which can be used in your tests.

Note: no need to define SPARK_HOME if you’ve installed pyspark using pip (e.g. pip install pyspark) - it should be already importable. In this case just don’t define SPARK_HOME neither in pytest (pytest.ini / –spark_home) nor as environment variable.


$ pip install pytest-spark


Set Spark location

To run tests with required spark_home location you need to define it by using one of the following methods:

  1. Specify command line option “–spark_home”:

    $ pytest --spark_home=/opt/spark
  2. Add “spark_home” value to pytest.ini in your project directory:

    spark_home = /opt/spark
  3. Set the “SPARK_HOME” environment variable.

pytest-spark will try to import pyspark from provided location.

Customize spark_options

Just define “spark_options” in your pytest.ini, e.g.:

spark_home = /opt/spark
spark_options = my-pytest-spark-tests
    spark.executor.instances: 1
    spark.jars.packages: com.databricks:spark-xml_2.12:0.5.0

Using the spark_context fixture

Use fixture spark_context in your tests as a regular pyspark fixture. SparkContext instance will be created once and reused for the whole test session.


def test_my_case(spark_context):
    test_rdd = spark_context.parallelize([1, 2, 3, 4])
    # ...

Using the spark_session fixture (Spark 2.0 and above)

Use fixture spark_session in your tests as a regular pyspark fixture. A SparkSession instance with Hive support enabled will be created once and reused for the whole test session.


def test_spark_session_dataframe(spark_session):
    test_df = spark_session.createDataFrame([[1,3],[2,4]], "a: int, b: int")
    # ...

Overriding default parameters of the spark_session fixture

By default spark_session will be loaded with the following configurations :


    '': 'pytest-spark',
    'spark.default.parallelism': 1,
    'spark.dynamicAllocation.enabled': 'false',
    'spark.executor.cores': 1,
    'spark.executor.instances': 1,
    '': 'lz4',
    'spark.rdd.compress': 'false',
    'spark.sql.shuffle.partitions': 1,
    'spark.shuffle.compress': 'false',
    'spark.sql.catalogImplementation': 'hive',

You can override some of these parameters in your pytest.ini. For example, removing Hive Support for the spark session :


spark_home = /opt/spark
spark_options =
    spark.sql.catalogImplementation: in-memory



Run tests locally:

$ docker-compose up --build

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytest-spark-0.6.0.tar.gz (5.7 kB view hashes)

Uploaded source

Built Distribution

pytest_spark-0.6.0-py3-none-any.whl (6.9 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page