Skip to main content

Python binding for Rust's library for reading excel and odf file - calamine

Project description

python-calamine

Python binding for beautiful Rust's library for reading excel and odf file - calamine.

Is used

Installation

Currently, whl's builds are provided only for linux.

pip install python-calamine

Example

from python_calamine import get_sheet_data, get_sheet_names


get_sheet_names("file.xlsx")
# ['Page1', 'Page2']

get_sheet_data("file.xlsx")
# [
# ['1',  '2',  '3',  '4',  '5',  '6',  '7'],
# ['1',  '2',  '3',  '4',  '5',  '6',  '7'],
# ['1',  '2',  '3',  '4',  '5',  '6',  '7'],
# ]

Also, you can use monkeypatch for pandas for use this library as engine in read_excel().

from pandas import read_excel
from python_calamine.pandas import pandas_monkeypatch


pandas_monkeypatch()

read_excel("file.xlsx", engine="calamine")
#            1   2   3   4   5   6   7
# 0          1   2   3   4   5   6   7
# 1          1   2   3   4   5   6   7

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python_calamine-0.0.2.tar.gz (4.8 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

python_calamine-0.0.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.whl (540.1 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.5+ x86-64

python_calamine-0.0.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (540.1 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.5+ x86-64

python_calamine-0.0.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (540.1 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.5+ x86-64

python_calamine-0.0.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (540.1 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.5+ x86-64

File details

Details for the file python_calamine-0.0.2.tar.gz.

File metadata

  • Download URL: python_calamine-0.0.2.tar.gz
  • Upload date:
  • Size: 4.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.11.3

File hashes

Hashes for python_calamine-0.0.2.tar.gz
Algorithm Hash digest
SHA256 56a3289c39fa034c4476c1ece39aaceb76358df8b4e1858f3ddaff921f0bce5a
MD5 0fbfb2f7a89062b0cfe59349d7dcbb5a
BLAKE2b-256 2587f25d7cc119b5d2920f842e4abad5ea692a3c8f0414f8d7632535eb58dde5

See more details on using hashes here.

File details

Details for the file python_calamine-0.0.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_calamine-0.0.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 954090f727e0159be5c0ce375e31016497323590ff7f12c591fb73a51bdb383e
MD5 deb8bc2c55030a7f4b29bcd8e98230e2
BLAKE2b-256 f99a7811b47bf641b836de688f31bee6619a2131bb62c8a5a25f04dc2a69d677

See more details on using hashes here.

File details

Details for the file python_calamine-0.0.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_calamine-0.0.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 99953c7197d527e1477a9cb5644e3b9c2ca419ccbbb1b1a3d5f2ef81d1dd1d42
MD5 aa05619f0ee24241005e0f15d2f377c5
BLAKE2b-256 980a97ed9886de88c33c17fe665c3c7d97e3ddd17ab4e3d8971b9a5de439523d

See more details on using hashes here.

File details

Details for the file python_calamine-0.0.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_calamine-0.0.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 13ae7f9cff02f93b790c50e7aaf1305bf90ead7b7b7e0d211127bfbf2b8010d0
MD5 dc10b21566511a7cd6bf6359cc713ef6
BLAKE2b-256 876675b592357e8d1499547fd9b3416397f03d459d94e32dbdb21e5a343d7254

See more details on using hashes here.

File details

Details for the file python_calamine-0.0.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_calamine-0.0.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 63e77bcafd32b6c1e42756272d6a9f50a53b671aa4cfec95cbe31b11f77474d2
MD5 1b47b2c2004b64f451acf3dcda0573f0
BLAKE2b-256 58cf81b010dbe4c60ee6bc1c66e9961ec52777ed2b91475f219b9c3513b3fdd7

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page