Skip to main content

Project created to given the possibility of create dynamics config files

Project description

python-config-parser


Tests PyPI version Coverage Status

python-config-parser lets you create runtime configuration objects using json or yaml files.

MAIN FEATURES


  • Declarative configurations without using .ini files
  • Access using OOP or subscriptable, which means that you can iterate the config object items
  • Runtime validation using schema
  • Automatic environment variables interpolation
  • Automatic parser selecting using config file extension

HOW TO INSTALL


Use pip to install it.

pip install python-config-parser

HOW TO USE


By default, the config file will look for any of the following config files in the config directory: config.json/config.yaml/config.yml. You can change the config directory and or config file according to your preference (assuming your current directory).

from pyconfigparser import configparser

configparser.get_config(CONFIG_SCHEMA, config_dir='your_config_dir_path', file_name='your_config_file_name')

Schema validation

You may or not use schema validation. If you want to use it, it will validate and apply rules to the whole config object before returning it. If you choose to not use it, it won't validate the config object before returning it, and it may generate runtime access inconsistencies. How to use schema

from schema import Use, And

SCHEMA_CONFIG = {
    'core': {
        'logging': {
            'format': And(Use(str), lambda string: len(string) > 0),
            'date_fmt': And(Use(str), lambda string: len(string) > 0),
            'random_env_variable': str
        },
        'allowed_clients': [{
                'ip': str, # <- Here you can use regex to validate the ip format
                'timeout': int
            }
        ]
    }
}

The config.yml file

core:
  random_env_variable: ${RANDOM_ENV_VARIABLE}
  logging:
    format: "[%(asctime)s][%(levelname)s]: %(message)s"
    date_fmt: "%d-%b-%y %H:%M:%S"
  allowed_clients:
  - ip: 192.168.0.10
    timeout: 60
  - ip: 192.168.0.11
    timeout: 100

A json config file would be something like:

{
  "core": {
    "random_env_variable": "${RANDOM_ENV_VARIABLE}",
    "logging": {
      "format": "[%(asctime)s][%(levelname)s]: %(message)s",
      "date_fmt": "%d-%b-%y %H:%M:%S"
    },
    "allowed_clients": [
      {
        "ip": "192.168.0.10",
        "timeout": 60
      },
      {
        "ip": "192.168.0.11",
        "timeout": 100
      }
    ]
  }
}

The config instance

from pyconfigparser import configparser, ConfigError
import logging

try:
    config = configparser.get_config(SCHEMA_CONFIG)  # <- Here I'm using that SCHEMA_CONFIG we've already declared
except ConfigError as e:
    print(e)
    exit()

# to access your config you just need to:

fmt = config.core.logging.format #at this point I'm already using the config variables
date_fmt = config['core']['logging']['date_fmt'] # here subscriptable access

logging.getLogger(__name__)

logging.basicConfig(
    format=fmt,
    datefmt=date_fmt,
    level=logging.INFO
)

# the list of object example:

for client in config.core.allowed_clients:
    print(client.ip)
    print(client.timeout)
    
# You can also iterate objects, but instead of giving the property it'll give you the property's name
# And then you can access the values by subscriptale access
for logging_section_attr_key in config.core.logging:
    print(config.core.logging[logging_section_attr_key])

# Accessing the environment variable already resolved
print(config.random_env_variable)

Assuming you've already created the first Config's instance this instance will be cached inside Config class, so after this first creation you just need to re-invoke Config.get_config() without any argument

from pyconfigparser import configparser

config = configparser.get_config()

You can also disable this caching behavior

from pyconfigparser import configparser

configparser.hold_an_instance = False

Environment Variables Interpolation

If the process does not find a value already set to your env variables It will raise a ConfigError. But you can disable this behavior, and the parser will set None to these unresolved env vars

from pyconfigparser import configparser

configparser.ignore_unset_env_vars = True
config = configparser.get_config()

CONTRIBUTE


Fork https://github.com/BrunoSilvaAndrade/python-config-parser/ , create commit and pull request to develop.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python_config_parser-3.1.6.tar.gz (5.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

python_config_parser-3.1.6-py3-none-any.whl (5.8 kB view details)

Uploaded Python 3

File details

Details for the file python_config_parser-3.1.6.tar.gz.

File metadata

  • Download URL: python_config_parser-3.1.6.tar.gz
  • Upload date:
  • Size: 5.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for python_config_parser-3.1.6.tar.gz
Algorithm Hash digest
SHA256 ab92817179804c8e1d4b30b4c76d1f9e9a974d39de64a9e10a4d44f834355ff3
MD5 9e02798dabc41e749c00c0361b50cbe3
BLAKE2b-256 db3ab686863d3c7b8c57a63d7e98ce43a0b7c8858e9b1578b041b5fe19d432a6

See more details on using hashes here.

File details

Details for the file python_config_parser-3.1.6-py3-none-any.whl.

File metadata

File hashes

Hashes for python_config_parser-3.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 e5801cf0bf7c425584e4c465a853f66c8f94c8cbb27697ca5bdb22689f532c8d
MD5 d255b2860b63422bf48308e112ddc8e4
BLAKE2b-256 2850ee709580f8dee009d0cdc335deeb67639883d612557d9abd610f7772f445

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page