COPASI Python API
Project description
COPASI is a software application for simulation and analysis of biochemical networks and their dynamics. COPASI is a stand-alone program that supports models in the SBML standard and can simulate their behavior using ODEs or Gillespie’s stochastic simulation algorithm; arbitrary discrete events can be included in such simulations.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Filename, size | File type | Python version | Upload date | Hashes |
---|---|---|---|---|
Filename, size python_copasi-4.30.233-cp27-cp27m-macosx_10_9_x86_64.whl (7.6 MB) | File type Wheel | Python version cp27 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp27-cp27m-manylinux1_i686.whl (9.6 MB) | File type Wheel | Python version cp27 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp27-cp27m-manylinux1_x86_64.whl (9.8 MB) | File type Wheel | Python version cp27 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp27-cp27mu-manylinux1_i686.whl (9.6 MB) | File type Wheel | Python version cp27 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp27-cp27mu-manylinux1_x86_64.whl (9.8 MB) | File type Wheel | Python version cp27 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp27-cp27m-win_amd64.whl (6.2 MB) | File type Wheel | Python version cp27 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp35-cp35m-manylinux1_i686.whl (9.6 MB) | File type Wheel | Python version cp35 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp35-cp35m-manylinux1_x86_64.whl (9.8 MB) | File type Wheel | Python version cp35 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp36-cp36m-macosx_10_9_x86_64.whl (7.6 MB) | File type Wheel | Python version cp36 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp36-cp36m-manylinux1_i686.whl (9.6 MB) | File type Wheel | Python version cp36 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp36-cp36m-manylinux1_x86_64.whl (9.8 MB) | File type Wheel | Python version cp36 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp36-cp36m-win32.whl (4.8 MB) | File type Wheel | Python version cp36 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp36-cp36m-win_amd64.whl (6.2 MB) | File type Wheel | Python version cp36 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp37-cp37m-macosx_10_9_x86_64.whl (7.6 MB) | File type Wheel | Python version cp37 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp37-cp37m-manylinux1_i686.whl (9.6 MB) | File type Wheel | Python version cp37 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp37-cp37m-manylinux1_x86_64.whl (9.8 MB) | File type Wheel | Python version cp37 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp37-cp37m-win32.whl (4.8 MB) | File type Wheel | Python version cp37 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp37-cp37m-win_amd64.whl (6.4 MB) | File type Wheel | Python version cp37 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp38-cp38-macosx_10_9_x86_64.whl (7.6 MB) | File type Wheel | Python version cp38 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp38-cp38-manylinux1_i686.whl (9.6 MB) | File type Wheel | Python version cp38 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp38-cp38-manylinux1_x86_64.whl (9.8 MB) | File type Wheel | Python version cp38 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp38-cp38-win32.whl (4.8 MB) | File type Wheel | Python version cp38 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp38-cp38-win_amd64.whl (6.4 MB) | File type Wheel | Python version cp38 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp39-cp39-macosx_10_9_x86_64.whl (7.6 MB) | File type Wheel | Python version cp39 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp39-cp39-manylinux1_i686.whl (9.6 MB) | File type Wheel | Python version cp39 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp39-cp39-manylinux1_x86_64.whl (9.8 MB) | File type Wheel | Python version cp39 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp39-cp39-win32.whl (4.8 MB) | File type Wheel | Python version cp39 | Upload date | Hashes View |
Filename, size python_copasi-4.30.233-cp39-cp39-win_amd64.whl (6.2 MB) | File type Wheel | Python version cp39 | Upload date | Hashes View |
Close
Hashes for python_copasi-4.30.233-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ebc2c63d09f6c471b033796c76bd06ff4655d829102e2fd8a978bd0d2a54e897 |
|
MD5 | fc9f08d82aaf6e187d75ff0784d9a896 |
|
BLAKE2-256 | c0ac766be2326d49d65e132b6e7901ae614831e993bdd4ad64bbc91af9b9aba3 |
Close
Hashes for python_copasi-4.30.233-cp27-cp27m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c0a1491cb370f1d264b71bafa6e9d398b407bea7730e97ae134b9ebdfa39b3b9 |
|
MD5 | d0369c93e9ca07edc05b8cdb5dc0f208 |
|
BLAKE2-256 | afb71a08c862e21a5db1dc1e7cdeccc31a487fdc9090892b6db09a125e01271c |
Close
Hashes for python_copasi-4.30.233-cp27-cp27m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2ef64bef652dc430fbb50763dc26591c424888eb37eb51d68574e8e84befd2a9 |
|
MD5 | aae061a8784e1f91dc45544b2fa9b9db |
|
BLAKE2-256 | 20f209bc0ecb24dbc2fffee1b32120d484a7f8ecef2dcdf1d1e6f9ceae1611f5 |
Close
Hashes for python_copasi-4.30.233-cp27-cp27mu-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3c0c32862018cdb37a018ffaf0f3401602665b42bb4503dd40b91009346c1d0d |
|
MD5 | 914dbfdd376a9b8606ee8913dd6bc3f5 |
|
BLAKE2-256 | c602008eaeff6d09e6753f05e073443caf370c7985d619dcfb6545b2ce248541 |
Close
Hashes for python_copasi-4.30.233-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e08df5e0ce25b8e701ebe005a7cc17fc80184c2d160738bf900a4299dd80f07c |
|
MD5 | 0c76673a6277e42238bba736280aa584 |
|
BLAKE2-256 | 4d528df7215b771b23ad957f574fa4818b52f3fb96a0d1ba2c27fae0efd28290 |
Close
Hashes for python_copasi-4.30.233-cp27-cp27m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0ec21574bcb07b2d5cd39ffcf21026ba577be215584c5da7736b2557fcd27514 |
|
MD5 | 5a669265669de247a88e184af919ded6 |
|
BLAKE2-256 | 9a26ca8bfcd71b8c116449645baebb2d6489e2f29f08fcede6618a59def00f87 |
Close
Hashes for python_copasi-4.30.233-cp35-cp35m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4592a3310e305520223c2621d5486f03258c0c3df768bdffbbb28a138ee852c0 |
|
MD5 | a4af507e605aa7ebccf13cf3f8ef827a |
|
BLAKE2-256 | 758c1bfedbd2e0b3f9b7920a25be78fef0071ac5df006172fd08a2a5c57ac169 |
Close
Hashes for python_copasi-4.30.233-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | faacbd8d375665df89a749f029f1b653ff2911b147420e1859163a358f5d1653 |
|
MD5 | 514337ece86e7313227025c37279d280 |
|
BLAKE2-256 | f8c8333b085f041a8ac5db24799a9dcff6c2d5889e810e07e596f1a7d09242d3 |
Close
Hashes for python_copasi-4.30.233-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 608c788fe464c2965949ff3d4dff1663812064ef9d995feb46d9d93ba7bee38a |
|
MD5 | 561b824b7fe164b6b5dbc45313e8a22c |
|
BLAKE2-256 | e2d9c8e0561f708e56b75edffc01ef3b6479f14c0ae46be0dc4cfb5963eea86f |
Close
Hashes for python_copasi-4.30.233-cp36-cp36m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6f38ab0967affa5b3fa56b47130abc33c611aa01f8e1e2870f2348a961e75b0a |
|
MD5 | 381e6d1bb9a58f9db74f909f398430c6 |
|
BLAKE2-256 | d16e41f821dffc4c20818f392f27ce572c2330d07f0a56db5e1b07d1f8564270 |
Close
Hashes for python_copasi-4.30.233-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | dcac3bffccdf218a134d11eae3bcba0d1b947b19e489c6117299df415714a379 |
|
MD5 | 9178d63a63463401e4f1e22c9b1f9264 |
|
BLAKE2-256 | bfe471484ab8dd97c83ec5a33b57fb65ac83adf751856a93a2f6524ec29d4b55 |
Close
Hashes for python_copasi-4.30.233-cp36-cp36m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 95d15fe7d014109e39478e71ced0fed59e540c6093949921fd43594cff69af56 |
|
MD5 | b637501115b5daec4a5eba58f1651a08 |
|
BLAKE2-256 | 511b2acf4583626780386c5dc909bb20d42b9facd72d5af830c0324e909a182a |
Close
Hashes for python_copasi-4.30.233-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 12e49dd1f71f50ee3a81216c0bdb9e0af0d031e2ae5d04467c9aa34bd22fde75 |
|
MD5 | 2f0c756c54b33d9eb51477eaf0bebec3 |
|
BLAKE2-256 | 7b84e5f18fe99277885096b690f5e1d9c5b1b1a7a31dd20cfa0f90b658447251 |
Close
Hashes for python_copasi-4.30.233-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9d6018488649006f80c5e911a17c55026854250772e7b4d23333f45ca8c81030 |
|
MD5 | 5a745b93c58b70a9e83c7361c1fbecf0 |
|
BLAKE2-256 | 8e24673631ae427bc7c88d67d55773f1dfaaf46b067caf1a630713afca6ab810 |
Close
Hashes for python_copasi-4.30.233-cp37-cp37m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c4cae6588ed93873ecfc8805ab10a57e67c560a761b0cc15f2fad19146e7e424 |
|
MD5 | 10e35d4726d5c2ca56519aa952d279a9 |
|
BLAKE2-256 | 37c73c19507d37fed951a0bba544de24c26fecfda1ce7f02dabb1c20138d57ca |
Close
Hashes for python_copasi-4.30.233-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7fabda541838aba27912f98b59fc12006385b9783ce956226b71f52f30195629 |
|
MD5 | f069826a914cad58833fcf48f04d87ea |
|
BLAKE2-256 | 224fe28005fd87f332535ab59ddf2d2d966313e232ebc4f49eafc14333c74e45 |
Close
Hashes for python_copasi-4.30.233-cp37-cp37m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 62e7c5821659f51f5b508b0af8ec2d1698d99f3e4f7e6d05b36686b13c83dd33 |
|
MD5 | 52a17a5bfa162bf6af3a743bd2263e38 |
|
BLAKE2-256 | 7c8ab8bb96b6d45a10437884cd4f530c8c3f1fac71a47645e801f7214c973587 |
Close
Hashes for python_copasi-4.30.233-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 764417efc02c123ec93a7953fd57084d68a5a8add5a48ce086ab9e589cfc5219 |
|
MD5 | 7e964caa1d00939d98842ddfef16ae8b |
|
BLAKE2-256 | 0a693265ee8b079efd619e67124bef8b6a9411b2807cc6100760b954834f3c3f |
Close
Hashes for python_copasi-4.30.233-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2c84dcbc69c2a061f0d07b7974e97f179f15bcca273a571dad4ac23835701229 |
|
MD5 | 9b3023c5de3365c44bdf768080651f24 |
|
BLAKE2-256 | cce2ca74630facdf9a08161878a5ac5915227ff9e4e29f6865634acdbd35b7ba |
Close
Hashes for python_copasi-4.30.233-cp38-cp38-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | be1df2298a00a1dfdba291aabcc71597778db0402825135c1c385439b86cfc6e |
|
MD5 | de61fa00d94ad92181ee746cd251627e |
|
BLAKE2-256 | 5e4ac754c0a830a705f9a5b1ffee56fe3af0c90369ab8385818bd8aa53f499e7 |
Close
Hashes for python_copasi-4.30.233-cp38-cp38-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9204c5387e8a2f81c883382dca807c01851311a2ee6c3dc861ce4e9baba31b23 |
|
MD5 | abfd5f79d48dd4a27b74d1bc76899258 |
|
BLAKE2-256 | 10805a3beb2af5b4fc86ab4a8cec7bdd046b8b2bf4b076099d1b892907331c04 |
Close
Hashes for python_copasi-4.30.233-cp38-cp38-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c6faf8701e053902e457036bcdd41054e3fd416df213a2bdaef948dc1d96e7ab |
|
MD5 | c3ca6d963db8e746eaf0e24cdcee0118 |
|
BLAKE2-256 | 9e10125b555d9f62479061203353296c4463a2c5cf666980b62508502aa23c53 |
Close
Hashes for python_copasi-4.30.233-cp38-cp38-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 276411cb3e07324a0f57aa100b6f5d320168e648250ddfb6a88ae302af402787 |
|
MD5 | f7aff8793ef4ef0f2bb300afcace4835 |
|
BLAKE2-256 | 80856cba4f96600ea42520c98859b2c45742c1055480b39f885a076123bc6201 |
Close
Hashes for python_copasi-4.30.233-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ea994fa469e1d7de3b35c79d63cbe76e71bf4cf76b43f1e3839bdcbda2bc0c8b |
|
MD5 | 958ae0ee5e5f7025c7010b1683e898c4 |
|
BLAKE2-256 | 5b59984591afc458ce3fae9ffb9678e8455512d03ac5e0c4eedafd5388580413 |
Close
Hashes for python_copasi-4.30.233-cp39-cp39-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2e2dae6acc114cfd47224a15e182f7903eb6ae80d1980a22e972bc68a5d336cf |
|
MD5 | 34ae46b7f671d95a4a54253545581482 |
|
BLAKE2-256 | e9f340cac0ce15b5698c39bb04d493c6cea55f64af18bc7323e1f61826faeb39 |
Close
Hashes for python_copasi-4.30.233-cp39-cp39-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5df91ad5dabd8baa14ba62bbb5a711ecf1e6974f4cab0e59c524b1a990e50857 |
|
MD5 | 4323121732e6c7ce3e31ab7238e6d720 |
|
BLAKE2-256 | d8c4e77604d7d20f9b89ce408420d65c1aaf62d2eed874e2da7798bd4604e2be |
Close
Hashes for python_copasi-4.30.233-cp39-cp39-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5a181d80e24ade0ac2fecfe735b1047585386517870e6a88dfa7a2551937c0b0 |
|
MD5 | 02391f507b26d2f416a5555620ed5315 |
|
BLAKE2-256 | 705ad96530e5ad68db134f3a071d5aa972b34309fea147d377ccbf6bee650177 |
Close
Hashes for python_copasi-4.30.233-cp39-cp39-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ea01836f35317ed13c3d084dfc2e2272e3a5ee439b1c3ff89d707ad06b9e2051 |
|
MD5 | b5746c83d687ac99b3bd46651f8bc49b |
|
BLAKE2-256 | 97cc563ceb974fdf5fd0e1728c35631e6e147f61f83a1f7f657c6b8562ac7797 |