Skip to main content

Interquartile Mean pure-Python module

Project description


Interquartile Mean pure-Python module. It contains two classes:

  1. DictIQM

  2. MovingIQM


This class is efficient for datasets in which many numbers are repeated. It should not be used for large datasets with a uniform distribution. The trade-off between accuracy and memory usage can be manged with its round_digits argument.


from iqm import DictIQM
import sys

diqm = DictIQM(round_digits=-1, tenth_precise=True)
for line in open("source1_numbers_list.txt", "r"):
    diqm("source1", line)

print "# {:12,.2f}    Dict IQM".format("source1"))


This class sacrifices accuracy for speed and low memory usage.


from iqm import MovingIQM
import sys

miqm = MovingIQM(1000)
for line in open("source1_numbers_list.txt", "r"):
    miqm("source1", line)

print "# {:12,.2f}    Moving IQM".format("source1"))


See LICENSE.txt (MIT License).

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python-iqm-0.2.1.tar.gz (4.4 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page