Skip to main content

A python implementation of Operational Transformation.

Project description

Python-OTType

A python library for Operational Transformation (OT). Basic idea follows the spec at https://github.com/ottypes/docs.

Supported Python versions : CPython 3.9 - 3.12, PyPy 3.9 - 3.10

Installation

pip install python-ottype

Basic usage:

import ottype

assert ottype.apply('asdf', [3, '123', {'d':'f'}]) == 'asd123'

OT Operations

Skip

Object type : int

Skip n characters from the current position is represented as n

assert apply('asdf', [3]) == 'asdf'

Insert

Object type : str

Insert a string s at the current position is represented as s

assert apply('asdf', ['qwer']) == 'qwerasdf'
assert apply('asdf', [2, 'qwer']) == 'asqwerdf'

Delete

Object type : dict

Delete a string s at the current position is represented as {'d': s}

assert apply('asdf', [{'d': 'as'}]) == 'df'
assert apply('asdf', [1, {'d': 'sd'}]) == 'af'

Supported Functions

OT = int | str | dict[str, str]

check(ots: Sequence[OT], *, check_unoptimized: bool = True) -> bool

Check the sequence if it only contains valid OTs. If check_unoptimized is True, only normalized sequence of OTs is accepted.

assert check(['a', 4, 'b'])
assert not check(['a', 'b'])  # is not normalized
assert not check([3])  # is not normalized

apply(doc: str, ots: Sequence[OT], *, check_unoptimized: bool = True) -> str

Apply a sequence of OTs to a string.

assert apply('abcde', [2, 'qq', {'d': 'c'}, 1, 'w']) == 'abqqdwe'

inverse_apply(doc: str, ots: Sequence[OT], *, check_unoptimized: bool = True) -> str

Inversely apply a sequence of OTs to a string.

assert inverse_apply(apply(doc, ots), ots) == doc

normalize(ots: Sequence[OT]) -> Sequence[OT]

Normalize a sequence of OTs : merge consecutive OTs and trim the last skip operation.

assert normalize([1, 2, 'as', 'df', {'d': 'qw'}, {'d': 'er'}, 3]) \
        == [3, 'asdf', {'d': 'qwer'}]

transform(ots1: Sequence[OT], ots2: Sequence[OT]) -> Sequence[OT]

Transform a sequence of OTs with the property:

assert apply(apply(doc, ots1), transform(ots2, ots1, 'left')) \
        == apply(apply(doc, ots2), transform(ots1, ots2, 'right'))

compose(ots1: Sequence[OT], ots2: Sequence[OT]) -> Sequence[OT]

Compose two sequences of OTs with the property:

assert apply(apply(doc, ots1), ots2) == apply(doc, compose(ots1, ots2))

Benchmark (at CPython 3.12.1)

Benchmark : apply operation

len(doc) len(ots) python (Kops/s) cython (Kops/s)
100 5 289.58 ( 1.00x) 663.47 ( 2.29x)
100 10 206.50 ( 1.00x) 513.00 ( 2.48x)
100 20 114.52 ( 1.00x) 298.82 ( 2.61x)
100 50 48.37 ( 1.00x) 127.90 ( 2.64x)
100 100 26.96 ( 1.00x) 71.84 ( 2.66x)
1000 5 412.41 ( 1.00x) 974.43 ( 2.36x)
1000 10 220.19 ( 1.00x) 493.53 ( 2.24x)
1000 20 128.66 ( 1.00x) 317.18 ( 2.47x)
1000 50 37.56 ( 1.00x) 98.56 ( 2.62x)
1000 100 23.43 ( 1.00x) 64.25 ( 2.74x)
10000 5 203.14 ( 1.00x) 322.31 ( 1.59x)
10000 10 142.25 ( 1.00x) 279.79 ( 1.97x)
10000 20 95.63 ( 1.00x) 202.97 ( 2.12x)
10000 50 48.58 ( 1.00x) 122.09 ( 2.51x)
10000 100 21.17 ( 1.00x) 57.59 ( 2.72x)

Benchmark : inverse_apply operation

len(doc) len(ots) python (Kops/s) cython (Kops/s)
100 5 194.12 ( 1.00x) 408.56 ( 2.10x)
100 10 113.27 ( 1.00x) 269.10 ( 2.38x)
100 20 60.99 ( 1.00x) 150.49 ( 2.47x)
100 50 26.35 ( 1.00x) 64.27 ( 2.44x)
100 100 16.62 ( 1.00x) 42.87 ( 2.58x)
1000 5 309.57 ( 1.00x) 565.47 ( 1.83x)
1000 10 153.62 ( 1.00x) 351.55 ( 2.29x)
1000 20 69.48 ( 1.00x) 162.52 ( 2.34x)
1000 50 37.12 ( 1.00x) 91.88 ( 2.48x)
1000 100 17.06 ( 1.00x) 42.51 ( 2.49x)
10000 5 145.11 ( 1.00x) 257.81 ( 1.78x)
10000 10 96.66 ( 1.00x) 198.97 ( 2.06x)
10000 20 65.18 ( 1.00x) 140.90 ( 2.16x)
10000 50 27.40 ( 1.00x) 67.74 ( 2.47x)
10000 100 13.53 ( 1.00x) 32.23 ( 2.38x)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python_ottype-24.6.0.tar.gz (11.3 kB view hashes)

Uploaded Source

Built Distributions

python_ottype-24.6.0-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (182.2 kB view hashes)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

python_ottype-24.6.0-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (182.1 kB view hashes)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

python_ottype-24.6.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (532.9 kB view hashes)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

python_ottype-24.6.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (541.9 kB view hashes)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

python_ottype-24.6.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (503.8 kB view hashes)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

python_ottype-24.6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (507.9 kB view hashes)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page