Skip to main content

A python wrapper for toml++

Project description

pytomlpp

Build Status Conda Status PyPI version

This is an python wrapper for toml++ (https://marzer.github.io/tomlplusplus/).

Some points you may want to know before use:

  • Using toml++ means that this module is fully compatible with TOML v1.0.0.
  • We convert toml structure to native python data structures (dict/list etc.) when parsing, this is more inline with what json module does.
  • The binding is using pybind11.
  • The project is tested using toml-test and pytest.
  • We support all major platforms (Linux, Mac OSX and Windows), for both CPython and Pypy and all recent Python versions. You just need to pip install and we have a pre-compiled binaries ready. No need to play with clang, cmake or any C++ toolchains.

Example

In [1]: import pytomlpp

In [2]: toml_string = 'hello = "世界"'

In [3]: pytomlpp.loads(toml_string)
Out[3]: {'hello': '世界'}

In [4]: type(_)
Out[4]: dict

In [6]: pytomlpp.dumps({"你好": "world"})
Out[6]: '"你好" = "world"'

Why bother?

There are some existing python TOML parsers on the market but from my experience they are implemented purely in python which is a bit slow.

Parsing data.toml 1000 times:
     rtoml:   0.540 s
  pytomlpp:   0.542 s ( 1.00x)
     tomli:   2.923 s ( 5.40x)
     qtoml:   8.748 s (16.18x)
   tomlkit:  51.608 s (95.49x)
      toml: Parsing failed. Likely not TOML 1.0.0-compliant.

Test it for yourself using the benchmark script.

Installing

We recommend you to use pip to install this package:

pip install pytomlpp

You can also use conda to install this package, on all common platforms & python versions. If you have an issue with a package from conda-forge, you can raise an issue on the feedstock

conda install -c conda-forge pytomlpp

You can also install from source:

git clone git@github.com:bobfang1992/pytomlpp.git --recurse-submodules=third_party/tomlplusplus --shallow-submodules
cd pytomlpp
pip install .

Alt

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytomlpp-1.1.0.tar.gz (1.3 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

pytomlpp-1.1.0-cp313-cp313-win_amd64.whl (185.5 kB view details)

Uploaded CPython 3.13Windows x86-64

pytomlpp-1.1.0-cp313-cp313-musllinux_1_2_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

pytomlpp-1.1.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pytomlpp-1.1.0-cp313-cp313-macosx_11_0_arm64.whl (167.1 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

pytomlpp-1.1.0-cp313-cp313-macosx_10_13_x86_64.whl (175.7 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

pytomlpp-1.1.0-cp313-cp313-macosx_10_13_universal2.whl (338.0 kB view details)

Uploaded CPython 3.13macOS 10.13+ universal2 (ARM64, x86-64)

pytomlpp-1.1.0-cp312-cp312-win_amd64.whl (185.5 kB view details)

Uploaded CPython 3.12Windows x86-64

pytomlpp-1.1.0-cp312-cp312-musllinux_1_2_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

pytomlpp-1.1.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pytomlpp-1.1.0-cp312-cp312-macosx_11_0_arm64.whl (167.1 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

pytomlpp-1.1.0-cp312-cp312-macosx_10_13_x86_64.whl (175.6 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

pytomlpp-1.1.0-cp312-cp312-macosx_10_13_universal2.whl (337.9 kB view details)

Uploaded CPython 3.12macOS 10.13+ universal2 (ARM64, x86-64)

pytomlpp-1.1.0-cp311-cp311-win_amd64.whl (185.0 kB view details)

Uploaded CPython 3.11Windows x86-64

pytomlpp-1.1.0-cp311-cp311-musllinux_1_2_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

pytomlpp-1.1.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pytomlpp-1.1.0-cp311-cp311-macosx_11_0_arm64.whl (168.6 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

pytomlpp-1.1.0-cp311-cp311-macosx_10_9_x86_64.whl (177.0 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

pytomlpp-1.1.0-cp311-cp311-macosx_10_9_universal2.whl (340.4 kB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

pytomlpp-1.1.0-cp310-cp310-win_amd64.whl (184.5 kB view details)

Uploaded CPython 3.10Windows x86-64

pytomlpp-1.1.0-cp310-cp310-musllinux_1_2_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

pytomlpp-1.1.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pytomlpp-1.1.0-cp310-cp310-macosx_11_0_arm64.whl (167.3 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

pytomlpp-1.1.0-cp310-cp310-macosx_10_9_x86_64.whl (175.6 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

pytomlpp-1.1.0-cp310-cp310-macosx_10_9_universal2.whl (338.1 kB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

pytomlpp-1.1.0-cp39-cp39-win_amd64.whl (184.9 kB view details)

Uploaded CPython 3.9Windows x86-64

pytomlpp-1.1.0-cp39-cp39-musllinux_1_2_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

pytomlpp-1.1.0-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pytomlpp-1.1.0-cp39-cp39-macosx_11_0_arm64.whl (167.5 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

pytomlpp-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl (175.8 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

pytomlpp-1.1.0-cp39-cp39-macosx_10_9_universal2.whl (338.5 kB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

pytomlpp-1.1.0-cp38-cp38-win_amd64.whl (184.4 kB view details)

Uploaded CPython 3.8Windows x86-64

pytomlpp-1.1.0-cp38-cp38-musllinux_1_2_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ x86-64

pytomlpp-1.1.0-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pytomlpp-1.1.0-cp38-cp38-macosx_11_0_arm64.whl (167.1 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

pytomlpp-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl (175.3 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

pytomlpp-1.1.0-cp38-cp38-macosx_10_9_universal2.whl (337.8 kB view details)

Uploaded CPython 3.8macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file pytomlpp-1.1.0.tar.gz.

File metadata

  • Download URL: pytomlpp-1.1.0.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.25

File hashes

Hashes for pytomlpp-1.1.0.tar.gz
Algorithm Hash digest
SHA256 61a0f73e7ba2fe8bba4e99ce6d2701491885850b53aad8f3e46d03c4b31e594d
MD5 596b1c9ee8467629167e8719d3da4991
BLAKE2b-256 10fe50ca1ac0c1a932d3e71311baff531c0395e546ec0cd42bc8a8a88c36e00b

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.1.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 185.5 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.25

File hashes

Hashes for pytomlpp-1.1.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 9d1b201a6d580a064d1a0d382e74b76b6435f51bfa5e60a2b72fb022944e97fd
MD5 a02449f5be5a65e46c58cead91a7c9b6
BLAKE2b-256 78e7948267618fa0be4f1a79af21925119230435a4e82ab49076abf885a81cd1

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 fd511b841bb762b4ebad51bec6e063535a22ed892e046be0b3d2fe1000e09b6f
MD5 4a8e7208988657392f70d54fe64d6ffa
BLAKE2b-256 4569242540eaff697938394b0dce805c2aa5831d26e7dc64018dbd0fdc6505d5

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 25a65d572c7b506bba5dae3eb034896f09d09807a157161a758dbd141d438842
MD5 a43d4aa2a88a5d06f8ade3167c462850
BLAKE2b-256 d051862df4c1575787b9fda834f3e0e1d5e3fbdbd32ea00b88e8393c7cfdc018

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 24f0d7e23440ae2f17a760e130e1b0ef674fd2b7c718cce60efcea1ba34a7bb3
MD5 0dc9c50a9f14734e61a2512a6bf6b49a
BLAKE2b-256 5818f7c91eced4ef8aa9c0b9dba3716492fe6ab0966f3994c0ae333bb9a8dcf1

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 fb65edbed4dd7528d56922c25dbf9191d4e7e06b072d29ae222dab8d81b0a422
MD5 287d3cdebfde8585f43f5540b6274c62
BLAKE2b-256 958a64f180976408d1369f93b94fd74037ace73c65bdeb49772ca1f5af15b347

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp313-cp313-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp313-cp313-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 854b887fc9e6144a1215c117df7391a77caaa4f210d0a87b35fcac4b6c0ddd8f
MD5 b43e30954a277ff3f755bf8567f1901b
BLAKE2b-256 b6c9bf0c3751ed0f6c55b625cabe87b79b3c60fd32318fcebff3e6acd664a85b

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.1.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 185.5 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.25

File hashes

Hashes for pytomlpp-1.1.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 8ab08d386a07d86b29351e012467c1eeaddfa5a350c755814462b689e482b54f
MD5 ca4b18bc3fcd1d8a583c3e10e045d0c5
BLAKE2b-256 b540cf45fdb5f436c9fadf526884ffb579855750dd94945d696ecc7961838b6e

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f269f99fbd7b57f8c5dd20558fe04ff1ba69d4fa34328740cf4aca63cfee2683
MD5 be506f5cf1274cf6a36e152a445bbe28
BLAKE2b-256 1097de34b5896d435140fd986e0af5177082c729e6bf4372f2075193d760ff99

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 8907b2a398f8b9508067f0ba295950280d86e07be002971d9ad8dd44069f5876
MD5 c0a274ed4c2fae1693df4f4a2f1d74b7
BLAKE2b-256 939d693efc46ab6a21dfa62023bd2c8a328218346e4fd088808fe52cfa3dd834

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8fbb551f664f1041b8f82b3701e85976189ec45b3eefbb5b5f92d7ce63f2a268
MD5 8afa3a55a763676e6d3de97d1490ed00
BLAKE2b-256 18cf1baa60d06aa015b466f090a3dbbb2d6bb831e0b9d0e033a67e289a0d6a1d

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f7f79dd2a584deda5d4284e6761290c54faa4c0cc1193ae7216f4fed5494c90b
MD5 f0c239700c3e4d18d63e1b08a12324a0
BLAKE2b-256 5eb743731e87a06917211b3947a29528bb4116d4f7f806d148aa4b45d9486b52

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 31ddfa1f910cdf39d897a51fb824694884886570bab6c5974ff16b0e491fe212
MD5 72c53055f1669e0fc0485577ac89f8cd
BLAKE2b-256 48a3093528ee9506e288e4c6ad1549cf3062da67cc87eba9e06ee4a7bbfe4d48

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.1.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 185.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.25

File hashes

Hashes for pytomlpp-1.1.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e9c1a7a060a41b65315fbcd09d081176b5e3a2a24d3bea79a5de62d21a456f73
MD5 4ccef083c32f5e400eb3b25d73b0a216
BLAKE2b-256 bef46ec2d8610c3093bc110541ad1bf07114cf51972e236c023bdb2c9586658d

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a8b82d3b86cac020e1e2b4dad7ba54c7f2757e6ad9cda350b9ad8f15da9c326f
MD5 37360e9ab2013723810a02116b228626
BLAKE2b-256 c6169d70440b24f563946fdc6c70d63f26aa181313790a92357cc60b9d0f1b67

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 65978eeeae5cfe79519eb0e5f48a39f09944e79b61531a400d185b80823d6b51
MD5 87b88100f9b1c310a090d095f810915f
BLAKE2b-256 25217bc90904f231ad268c43edc9a540ea37935fe35df53727107e81d83bec84

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 544d2e4caf0363f95b9b71181ccf6ebbee0a90d001ff22c2806a7742cc09729b
MD5 c5700a49e32a669eea4ec04c51fe401c
BLAKE2b-256 f570599c1151dc63513bc8349c1374450c7bfd7bfb21deaffa9fb8f40302be2a

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4ef99706b66663cc06fa0720b786171ba173a7dddf09f7d99dc53c68ee5db573
MD5 5e3077e2b0d2b3f13378d4a308d2fc5d
BLAKE2b-256 0cb00f75e33eaad85012f5797e2d19af32ab9777c38cfbe39a381a4c17258e97

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d6fc7975f666609926b78e6b82dd120f3bd58b431481ca50f0f4c8febb025cd7
MD5 8baf0e9044ba16b4d320bb972353d414
BLAKE2b-256 89282025f72ca8761e96185f52fd186a691177f0d638e70a83c9ac8998997723

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.1.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 184.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.25

File hashes

Hashes for pytomlpp-1.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5b073c6e74f699bb70c3aa9c6053c18ee4dd8a92c71aa4e7e1c973cdc352be1f
MD5 67d6ac1d69eb9f466f5cdbec6923fbbe
BLAKE2b-256 2b005b3819cf58517a7f466482dc9ac76af8c4f80207c2a10210413932a37be4

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f58a71bb8e81853d14db03bb2437c3db97a859e1cb1b2813c67cd7a57ab3ef8b
MD5 a29905bcef8db8b2648585176d014622
BLAKE2b-256 3e45cfd266c2ff491eceea2bd7290ff07eac75dc25d26c91b46599b28971245d

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 853b0a56049938dc9a32e3f28a6c926d4d373d95d004a95ddb693888f26cb940
MD5 cb2a86849eaf02f85cae782c36021276
BLAKE2b-256 7f626d5027d03f75cd21ced2a603ac4c359a19c9132a997345413965599ab151

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f992b18401f2ba7f335f29a8318e06de501120f4bec7f96c00cfb0729e081096
MD5 6942e123ffa971e8a199508116532385
BLAKE2b-256 2ac7d524dd31a71536dadd99cd3722cef3ea87f25740229b1b7e50f86ec6c36d

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 69e73c7376b3958b2c5aeafb97066e9e7e233c03220e46874927f6a0f2218592
MD5 fe546642e85822cf6b7b186f3815b10a
BLAKE2b-256 02b21a493d06a92409c8968110b4289398f22e3db931e6c5930da8a9551d6787

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5d173d1952317f7452eb8530e2dd8389b4b2191f1cd0e3abd2793fdbec0a748f
MD5 130db19ab1792c0dfbf6df9bd52fc987
BLAKE2b-256 770f5b2e3b4c929f6177da17f6fda4214a047475b4f535ec61509c814eb7fb23

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.1.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 184.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.25

File hashes

Hashes for pytomlpp-1.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e9f13bbb012dd60b0fa5b5818af1ca6dcb34cb1b8643a3ac08d0e099aaec8991
MD5 67d466ecb617b06e47c7774c14898674
BLAKE2b-256 b2565bc64b16bb186c6e2cf1fa14c056c2ced00846191b4e2e4d5bd776838777

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 85461546ce88523ba00d91d3038a6229df5c41332f5ffad22e1fc2b8c3777fc5
MD5 0bda95ec9d1ebbf15c027f7504836340
BLAKE2b-256 72762385c3174427c7a85ca1485c3c1343a9ac54eb9cb9b714e4f6b4ca71f533

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0ff0fef30a4186952b4c1a0ea1cb66ea6a2d5d6c1e75ba5c981f8b30b5679f3e
MD5 ad46d93db5165281324b85faa6e76d19
BLAKE2b-256 49ca2e6cdfee8dd0e1005107a740f23ccabaf2a428a45b657efeaf9fa85b3ced

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 71541aa0db317444a850117e9588842c6a4c815ddbe11a7934d96aed724bfc59
MD5 7e54aee7fe25c4c3e0d070c1b935e6b7
BLAKE2b-256 5241b8a205141d518bd1ca1291399e3b2480d77cfea1144a0f7288494b6a2e15

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e1dd64092d3c890c9c1a5ec5b53af0dfae954a4b7ca5fe2aecca95564c80a115
MD5 6f51885876b6028ab52c3d793e6996b3
BLAKE2b-256 5ae0e02ec085d3fd1ae6dac4b93f9f682b8ec5265d35eff77ad0ea92504f7762

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1ac002291f4d8b582fa7377dd8d42064ffb67440277043a99282af614bdcb339
MD5 0ca887193467c09e46663d502a4afae0
BLAKE2b-256 a349b3f240fc4d8fdce6289d6e6a859807f12607f5b4774cbf7ea35b663f4067

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 184.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.25

File hashes

Hashes for pytomlpp-1.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 81a96a84401278cd6632dd3b6d4f173ec316e088359fda1977d95e8cbc526308
MD5 eb41a1f6d7da95494a19872e572af37a
BLAKE2b-256 9f31a5d419f7dca06bbc83ff801b3d94b1d035f9994e1f7b5adecf3256bd3ddb

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 fe604f389e0d8d2572bbea856e6996cdc559c13d0d38521165989b7f1f8bc7e8
MD5 601b7ef0d9208d3b66d69fd91ff957cb
BLAKE2b-256 bf64779e355ca010ae3146a959bec58c8c0454b66c30d0bdffabbaf70cc07c83

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ecd7b8d372c2e7e14447f4f68d24eace84278e18c2291fd5bfe3620a2751a8d3
MD5 c955cce426400348c70b9183be9d0c3c
BLAKE2b-256 dd8b8abe85a0c444d19a76d07f6bdb3c68f67e280fb0f8ff1f45a118dd38855d

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cd7c78435d0d30440589bccb4bdda374093d335a1a035bc9cfd68148de9adb63
MD5 c95736763b3433df1b42b3f0dfc9b34b
BLAKE2b-256 908759cd40df7edd0676557b01592a2001335b229138324a60528861cf450095

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 11b6bc38acc260548ae42298c1cefef3902771bad467df71367d0a9189e2dba0
MD5 3dc130068feebd60bd272f1d05dfe9d9
BLAKE2b-256 607c1d47ed57d25e2761b144324a0c9064651ac2dc805257c68019819af8c976

See more details on using hashes here.

File details

Details for the file pytomlpp-1.1.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pytomlpp-1.1.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 872160463944b77c505d8ea1b708c0c379c469a6b1a8ce7668cf3a88a3009fe3
MD5 f088272c8586afa9db45ad79560e8c77
BLAKE2b-256 4ebdba27d8a58bb8c0c97d22588015771180291a98a62c54d0dbd236857ff9e5

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page