Skip to main content

A python wrapper for toml++

Project description

pytomlpp

Build Status Conda Status PyPI version

This is an python wrapper for toml++ (https://marzer.github.io/tomlplusplus/).

Some points you may want to know before use:

  • Using toml++ means that this module is fully compatible with TOML v1.0.0.
  • We convert toml structure to native python data structures (dict/list etc.) when parsing, this is more inline with what json module does.
  • The binding is using pybind11.
  • The project is tested using toml-test and pytest.
  • We support all major platforms (Linux, Mac OSX and Windows), for both CPython and Pypy and all recent Python versions. You just need to pip install and we have a pre-compiled binaries ready. No need to play with clang, cmake or any C++ toolchains.

Example

In [1]: import pytomlpp                                                                                                                                                                                                                                                                            

In [2]: toml_string = 'hello = "世界"'                                                                                                                                                                                                                                                             

In [3]: pytomlpp.loads(toml_string)                                                                                                                                                                                                                                                                
Out[3]: {'hello': '世界'}

In [4]: type(_)                                                                                                                                                                                                                                                                                    
Out[4]: dict

In [6]: pytomlpp.dumps({"你好": "world"})                                                                                                                 
Out[6]: '"你好" = "world"'

Why bother?

There are some existing python TOML parsers on the market but from my experience they are implemented purely in python which is a bit slow.

Parsing data.toml 5000 times:
  pytomlpp:   0.694 s
     rtoml:   0.871 s ( 1.25x)
     tomli:   2.625 s ( 3.78x)
      toml:   5.642 s ( 8.12x)
     qtoml:   7.760 s (11.17x)
   tomlkit:  32.708 s (47.09x)

Test it for yourself using the benchmark script.

Installing

We recommend you to use pip to install this package:

pip install pytomlpp

You can also use conda to install this package, on all common platforms & python versions. If you have an issue with a package from conda-forge, you can raise an issue on the feedstock

conda install -c conda-forge pytomlpp

You can also install from source:

git clone git@github.com:bobfang1992/pytomlpp.git --recurse-submodules=third_party/tomlplusplus --shallow-submodules
cd pytomlpp
pip install .

Alt

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytomlpp-1.0.10.tar.gz (1.0 MB view details)

Uploaded Source

Built Distributions

pytomlpp-1.0.10-pp37-pypy37_pp73-win_amd64.whl (184.2 kB view details)

Uploaded PyPy Windows x86-64

pytomlpp-1.0.10-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (217.0 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

pytomlpp-1.0.10-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (231.8 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

pytomlpp-1.0.10-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (165.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pytomlpp-1.0.10-cp310-cp310-win_amd64.whl (185.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

pytomlpp-1.0.10-cp310-cp310-musllinux_1_1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pytomlpp-1.0.10-cp310-cp310-musllinux_1_1_i686.whl (3.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pytomlpp-1.0.10-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

pytomlpp-1.0.10-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

pytomlpp-1.0.10-cp310-cp310-macosx_11_0_arm64.whl (184.1 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pytomlpp-1.0.10-cp310-cp310-macosx_10_9_x86_64.whl (190.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pytomlpp-1.0.10-cp310-cp310-macosx_10_9_universal2.whl (371.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pytomlpp-1.0.10-cp39-cp39-win_amd64.whl (185.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

pytomlpp-1.0.10-cp39-cp39-musllinux_1_1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pytomlpp-1.0.10-cp39-cp39-musllinux_1_1_i686.whl (3.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pytomlpp-1.0.10-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

pytomlpp-1.0.10-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

pytomlpp-1.0.10-cp39-cp39-macosx_11_0_arm64.whl (184.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pytomlpp-1.0.10-cp39-cp39-macosx_10_9_x86_64.whl (191.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pytomlpp-1.0.10-cp39-cp39-macosx_10_9_universal2.whl (372.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pytomlpp-1.0.10-cp38-cp38-win_amd64.whl (185.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

pytomlpp-1.0.10-cp38-cp38-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pytomlpp-1.0.10-cp38-cp38-musllinux_1_1_i686.whl (3.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pytomlpp-1.0.10-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pytomlpp-1.0.10-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (2.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

pytomlpp-1.0.10-cp38-cp38-macosx_11_0_arm64.whl (183.8 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pytomlpp-1.0.10-cp38-cp38-macosx_10_9_x86_64.whl (190.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pytomlpp-1.0.10-cp38-cp38-macosx_10_9_universal2.whl (371.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

pytomlpp-1.0.10-cp37-cp37m-win_amd64.whl (185.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

pytomlpp-1.0.10-cp37-cp37m-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pytomlpp-1.0.10-cp37-cp37m-musllinux_1_1_i686.whl (3.4 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

pytomlpp-1.0.10-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

pytomlpp-1.0.10-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (2.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

pytomlpp-1.0.10-cp37-cp37m-macosx_10_9_x86_64.whl (189.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pytomlpp-1.0.10-cp36-cp36m-win_amd64.whl (185.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

pytomlpp-1.0.10-cp36-cp36m-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

pytomlpp-1.0.10-cp36-cp36m-musllinux_1_1_i686.whl (3.4 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

pytomlpp-1.0.10-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

pytomlpp-1.0.10-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (2.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

pytomlpp-1.0.10-cp36-cp36m-macosx_10_9_x86_64.whl (189.1 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pytomlpp-1.0.10.tar.gz.

File metadata

  • Download URL: pytomlpp-1.0.10.tar.gz
  • Upload date:
  • Size: 1.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10.tar.gz
Algorithm Hash digest
SHA256 6de110c8fe43f46c52b2041d5fbaa0522677a712234832ffd8cbb51cff50804e
MD5 9f14fb848edc8ae5717ab89a30991d16
BLAKE2b-256 65543741d3dfc321faff0b03fd7ab5d6eec7dbfb5dee9118b1870139b4fedd8f

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 184.2 kB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 5d84867255df25b9e53c6e37d31fccd55dec4c5f0890d443f9e0637c7709d65d
MD5 98d6512a67bfe514b166bfceb446ce47
BLAKE2b-256 a78c5d346c116abff32ba2cfed629812eb2eb93e7c759323fa2aa5f6eae01ffb

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.10-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f7234e384de4e927e1226b4abf36708002f3c83e7cdcd82273e3f7d16731ecd6
MD5 bd4910fefe833cedb3bbfc5e0da23500
BLAKE2b-256 43d2fe71bc84bc8a82dc5478b473dfb3de57fa1836d0070d325ce2a2b85491de

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.10-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 eaa6ec526c111662babd4f4b588db2239da60cf2b952951e555ac93ac63dc13f
MD5 780490fa89d47fa983fc9d21dedce2e2
BLAKE2b-256 752615590e11e94719fccce2e952bfdcbd5694d3cf4655b2d5ddb3f512ec5f55

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 165.4 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e61837a3fea0765870eebfbb1d8629185b604c25842f838d2983ca93462d31cf
MD5 3613854cca24c0201b27942ae942c565
BLAKE2b-256 8dcb05cfa7ede5e7410ed7a40204c71d6e2bc37e73ac10978388e5dfe7d29bb7

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 185.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 40dff3c20170d698f401043976131baf3a99b68347a008b1e6a131d82175703e
MD5 3b680826c6041572e756092c583c105b
BLAKE2b-256 5b054ebd7757a3c547560b9faa72fd45c4358652e30c16970213111dbf6e491c

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-cp310-cp310-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 40b410f2f75c70b57236ffcbed5719a909d9866397529f164d762c9df09ee595
MD5 56dee7233e62460f459aba0afeb8dea5
BLAKE2b-256 a86015d5e2b207f2b4b1f68d56d98c4339b787c94ed8f626c2476560ebb37029

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-cp310-cp310-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 eeee6c9c5db41bca8ffae18847c424c253ffe423c9621e8f88e70b7abac45715
MD5 657a80222a1b40449cbb92611215d15b
BLAKE2b-256 d198d8346fea31223ac31ac9bd33ed0f53508a45e381fb36d1a87e691dbe04de

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.10-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 43dea7b706e5dcdd03cbdd1462608e6a0a826f0d2c199bf4fbcfb1445ffd121d
MD5 cc55a659ddba151424675bd1f31b9b4d
BLAKE2b-256 a1284a3e7485cb6adcac2afdaf43a08cc38c1eed149aaa353f06b67f3c3bd62b

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.10-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8119fada8928ec5207cc3bee9e8df3875f2e0b8470bc0d815a9b5cf60d1ba8e1
MD5 d1b647adba911e85799da2d84a4ba13b
BLAKE2b-256 115dec658568d1e91c9459ee37c4012f720fa29a0dd6904f7f450c8ce34709c2

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 184.1 kB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fa90658e72d8167daa9260a2b2e6c9a438f025821af0f24f2fc39a28ccbb9c5f
MD5 3f0b626f7c1db3c2b72248ab0374a315
BLAKE2b-256 f999d7f39944a5ce8e174c9f336a222dd5138cdd4e29bd0975313f658ffe09b8

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 190.9 kB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f39ad95976de90f4fddc9a833027056256770c6372258277a30c8ac90c3262ef
MD5 cbc1c6b2d96dc5dea97d6bfd7da97de0
BLAKE2b-256 65d9c8272f96d38715d60ef8f15f354a7ea9bdcda03c6898a0b2df021d84d046

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 371.9 kB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9dd25ef71be2b4894db1c63d2177abc12b98a564d5ad09f7e3a84d31af38eaaa
MD5 bce6cfb4802313659b72b3b0be064a23
BLAKE2b-256 e959163ce2981897e82987d24d2cab4b9dadd7c4de7dbe6871790cf9269a8339

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 185.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 da07928bf00752bd619bf99fdfc47bec90401cab3b53f839cfd2799f29976bdb
MD5 a8f6b5d0c71fe2af664f269bec65e941
BLAKE2b-256 408b9c5d9e622d4a0c67636e69c42904a9b76a44134ca81b531754f564cfb0cb

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-cp39-cp39-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0ecc4557b5014d56f57b39e2333f2fe6887cd85882428101ea08a199372d154a
MD5 a1db03ba2b471aa569371ab4d8e49819
BLAKE2b-256 546fedf4e2d0b9918c09fe18d45c47d256f960f53b3435ebc2d85ff82d79c7ad

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-cp39-cp39-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 9145faed93f9815e15d2c115a6460cc375a2c6bd4f5556a215f34bba11e97206
MD5 304669b0c49e39a97969c3b9bfa6dc6a
BLAKE2b-256 c1851c15761242902fd236d7b2effb66d1303aaedd6b79d1faa53b1569de4f66

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.10-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 60e8e282ec832c8d010d0ff384202b8a3b85e6e515d08fd61937984d82e34f84
MD5 4f3595496dc621624c62bbe821d980ce
BLAKE2b-256 b1b83d6657b7b687fa640f15496eaf5b801155153dee458ace63be713a90853f

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.10-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 96c03281fffb013efdebd59460b1bf35f8bbc40267c62f7d4b498ac930715933
MD5 e7234bc63cfcd5598fdf5b62412d48f9
BLAKE2b-256 4bccf553ec4c912a4eff39811368a7d33396df81583b505864b1ffccd55686e8

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 184.3 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d5cd7c4a8b27cb90119ec1628bc5a09aa51939312417067cc59fd5e0e9f3d507
MD5 77b67164005400ade31c0174096edeee
BLAKE2b-256 bd5b8db396fc0b1b9c24d74fd6649717b9613797bcb0281316abfb6c87f3a6cd

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 191.1 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dd3130285af634951d081881232fb531d124daa4c6577fb73562633f9337e23c
MD5 c51a24917ee0531e5426a9dc1dc2fbf7
BLAKE2b-256 c6be5685b4a1286f3345a643f3d778bee40ffc5b64419f1ab76b491aa99b750e

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 372.2 kB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 629999878ead7a5e0c685d7516e5d28627081978bd25eeb7012a9e749e6a0be0
MD5 32c1629adcec0a285d5bf540e7bc1bbd
BLAKE2b-256 dd134f198b91df97e6bce060b966e6e5ad992fad671afec5bdb822ef383ff1a7

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 185.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 605e74d392699d3f34a4e3719db9712a18d213b006e910fbf5a7d83c4c349cf5
MD5 89a385d4ab7f3e614f6af909e17ac146
BLAKE2b-256 ccedc5d2af1334863b9c66f08f84cfb446dade083bc96d472b8c4880127b1d8f

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-cp38-cp38-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8c97d36c263f2b056debfc1ed54a5d42858db2464a99725989a3036abb7be0e9
MD5 230691ad28874b5db67399b66e0ef770
BLAKE2b-256 feae168468e310a084be6e9a8daf37267fbe517030585112c7d10f08e3e2cf55

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-cp38-cp38-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8395e7eef8aafcadc2f7c75621b30193fdf4ad348042c2f51c0b0ee9e437140b
MD5 5162fae2785036e2afdec14393e13287
BLAKE2b-256 9d42060ecbd7f4b8d0cada5c80a2e5710c49f7e02ebc7ccc54ac84e57f5b3910

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.10-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 61628511d3cdebf73f7e2e2a4df639e1a8cc973d2252a6fb422f702d12deebeb
MD5 56c1370145251063d828b6ef4d8d4ec6
BLAKE2b-256 6f71003944321195226f5728901243a3956e9b95168ac4423804cf67affbc890

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.10-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 872a9df9fd5adfe2f19344dd1302278a6f2223d0b0338c122369015a670a7443
MD5 c2b7895a36ecb74c8a4c09ba61af28fa
BLAKE2b-256 ee6e19221e9cd665724f24dbc80f9e872626e4b7d4982818870bfb92e7ba40ab

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 183.8 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2fe1cbd3e04d432be7204cc05cc11113b6d2fa3985947d464b1c38e253f48ed6
MD5 c123406cd42ce69b9cc2ddc4455e879f
BLAKE2b-256 0c1a01884d9a7d655936e135583a76a56535b2968b6535c8fd633be166c641d0

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 190.6 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cb8e132059fad0daca54e5e6931f691ef8c98fa454dcea15c94656d8f176d96c
MD5 23d5353abc8105911499911edbf637bf
BLAKE2b-256 3a34f78341e2593e41d176b1c0c546f859d086593b656817d57b3b0eae9bd8be

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 371.2 kB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 551a1782a3533b05679701357712572391d26f5ead49a3b64144b8085020b596
MD5 84c6a9050eadce08a362a37c72ce3f91
BLAKE2b-256 72f5de8df7a5d5d915cff5ad542382b9752d7eb01ac5f17fd87b0ae797986fe9

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 185.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 68c0bcb5d3a6ce0e8d1b0c23ebd136f7776806896415b116354b198d917e32fb
MD5 10010552c74910a574ee8c9f98392fdf
BLAKE2b-256 a21b8feed1964c91e1ab392d648043272fb621084f117cf7582b8fd2c29ee853

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-cp37-cp37m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 745f05a5ca6ebab2bd06e21688fbc0ad80aab34aed0d6dae8e506fc35d6be4df
MD5 c2142cbbf8abe3333363b19d5cb873c8
BLAKE2b-256 3cea152a2b2d49fc96abc3a0325dae6c7c18edd4f76cbbefc0c0045973480506

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-cp37-cp37m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b98791b128811a383d5e5769a07c6f9a1f44c8353a340d05a0be94a3586c54cf
MD5 54bb306488fe992e244db7558a51e560
BLAKE2b-256 14b38896ba6a7973cafa685394c0c5512c50978b4a68c97846c9930604c24d38

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.10-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 082bdf427ddce744c7e6f5b590d307c8609a01a4a49942bb912cc66e7b1f8b8c
MD5 8520d8f58bf3696200fb859c199d7220
BLAKE2b-256 f10b6af03d651c4f1fd79c4301a3c34ace37327ac1b6bb425ba50e35b6710183

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.10-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e9493e6a47cc7fb6e66fe1bccbfd619f114a916e4cd339795829b5f0ab01695a
MD5 fb1ad44c4912a19ed1f03049825f6d06
BLAKE2b-256 fed8fd2e97844f8a2427aee0b0432fcb67eb354750d73a307ee35dc0ab59efa6

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 189.1 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 53d76e8b85368b6989bb09f3f651038ec14e9a037020141928dd7cca4c9c443b
MD5 09d88ef802330004f66740341c6121a4
BLAKE2b-256 1aeac346b290759cfcf9b1617ecd8669f6d7d74f3b37ee3bc28ea690e67899ed

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 185.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 73c495ddac69fb60750c48aa650d52b3d9cd9e5aafe1e1a566abf167058326a5
MD5 fcdf77c190ba9527d63bfce32b640db0
BLAKE2b-256 3bd21f08fbf6186c578ec243bf627178922f315a4fc97b9a15ce89bf59481636

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-cp36-cp36m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4ffab7dd074a042d8e366d488e74fc49fe3d21e224d488bc47081141e04f013d
MD5 d5954e73e9600dbbad031299c131b27a
BLAKE2b-256 9b27309030997f6deb995b0c26cf9274167f1df0b6803ebc92eae4c58c32edaa

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-cp36-cp36m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a1325f7e94d539d72f7f19001b9e1063f62fde42beb36cee973f80923c45af8f
MD5 fce47ab310e63abc4cabc1b009444eb0
BLAKE2b-256 f2c879c2d8095d003c32576294d507564d1f2ed9970eb46d404e0f834686fcb7

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.10-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 09683a705baa952324f2d5c5518fef4b848567a655f225141bb5707d8e65a87a
MD5 e5837bdda0bf4b7c46f1c8b42b278fbb
BLAKE2b-256 46eb0b9c1c55a196d3dccc742d14711cb33dff05e18a2b82dee61199eda0d61a

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.10-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 7841e63b5964fffe566ed6cabf9361b99ea383ca74bcee800b223a41c0c4dcb0
MD5 ca4aca9fc753f1236ef3fa804ba52984
BLAKE2b-256 33c43a40cd21e4be3ecadd52634ee140550176c99d0a2cc616f3782ed81c0d6d

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.10-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.10-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 189.1 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.10-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 58f0294c05840705c54cfef3de05bde5ea7c841885132efe743e29a1d79ab59e
MD5 c84de85766a2397b28a079719698565b
BLAKE2b-256 1e1ede32420e537c5cc47e2f7c54b61bfb8e3d80e203ba3fe3eca47b7d7d1770

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page