Skip to main content

A python wrapper for toml++

Project description

pytomlpp

Build Status Conda Status PyPI version

This is an python wrapper for toml++ (https://marzer.github.io/tomlplusplus/).

Some points you may want to know before use:

  • Using toml++ means that this module is fully compatible with TOML v1.0.0.
  • We convert toml structure to native python data structures (dict/list etc.) when parsing, this is more inline with what json module does.
  • The binding is using pybind11.
  • The project is tested using toml-test and pytest.

Example

In [1]: import pytomlpp                                                                                                                                                                                                                                                                            

In [2]: toml_string = 'hello = "世界"'                                                                                                                                                                                                                                                             

In [3]: pytomlpp.loads(toml_string)                                                                                                                                                                                                                                                                
Out[3]: {'hello': '世界'}

In [4]: type(_)                                                                                                                                                                                                                                                                                    
Out[4]: dict

In [6]: pytomlpp.dumps({"你好": "world"})                                                                                                                 
Out[6]: '"你好" = "world"'

Why bother?

There are some existing python TOML parsers on the market but from my experience they are implemented purely in python which is a bit slow.

Parsing data.toml 5000 times:
  pytomlpp:    0.846 s
     tomli:    3.317 s (3.9x slower)
      toml:    5.697 s (6.7x slower)
     qtoml:    8.473 s (10.0x slower)
   tomlkit:   43.250 s (51.0x slower)

Test it for yourself using the benchmark script.

Installing

We recommand you to use pip to install this package:

pip install pytomlpp

You can also use conda to install this package, Note we only support linux 64 python 3.8 for now, I would love to provide this package on more python versions and platforms via conda but I have not found a way yet to automate this in the CI, if you know how to do this please contribute!

conda install -c dorafmon pytomlpp

You can also install from source:

git clone git@github.com:bobfang1992/pytomlpp.git --recurse-submodules=third_party/tomlplusplus --shallow-submodules
cd pytomlpp
pip install .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytomlpp-1.0.5.tar.gz (965.6 kB view details)

Uploaded Source

Built Distributions

pytomlpp-1.0.5-cp310-cp310-win_amd64.whl (174.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

pytomlpp-1.0.5-cp310-cp310-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pytomlpp-1.0.5-cp310-cp310-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pytomlpp-1.0.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

pytomlpp-1.0.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (2.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

pytomlpp-1.0.5-cp310-cp310-macosx_11_0_arm64.whl (178.0 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pytomlpp-1.0.5-cp310-cp310-macosx_10_9_x86_64.whl (180.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pytomlpp-1.0.5-cp310-cp310-macosx_10_9_universal2.whl (355.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pytomlpp-1.0.5-cp39-cp39-win_amd64.whl (174.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

pytomlpp-1.0.5-cp39-cp39-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pytomlpp-1.0.5-cp39-cp39-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pytomlpp-1.0.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

pytomlpp-1.0.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

pytomlpp-1.0.5-cp39-cp39-macosx_11_0_arm64.whl (178.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pytomlpp-1.0.5-cp39-cp39-macosx_10_9_x86_64.whl (180.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pytomlpp-1.0.5-cp39-cp39-macosx_10_9_universal2.whl (355.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pytomlpp-1.0.5-cp38-cp38-win_amd64.whl (174.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

pytomlpp-1.0.5-cp38-cp38-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pytomlpp-1.0.5-cp38-cp38-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pytomlpp-1.0.5-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pytomlpp-1.0.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (2.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

pytomlpp-1.0.5-cp38-cp38-macosx_11_0_arm64.whl (178.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pytomlpp-1.0.5-cp38-cp38-macosx_10_9_x86_64.whl (180.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pytomlpp-1.0.5-cp38-cp38-macosx_10_9_universal2.whl (354.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

pytomlpp-1.0.5-cp37-cp37m-win_amd64.whl (175.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

pytomlpp-1.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pytomlpp-1.0.5-cp37-cp37m-musllinux_1_1_i686.whl (3.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

pytomlpp-1.0.5-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

pytomlpp-1.0.5-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

pytomlpp-1.0.5-cp37-cp37m-macosx_10_9_x86_64.whl (179.4 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pytomlpp-1.0.5-cp36-cp36m-win_amd64.whl (175.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

pytomlpp-1.0.5-cp36-cp36m-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

pytomlpp-1.0.5-cp36-cp36m-musllinux_1_1_i686.whl (3.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

pytomlpp-1.0.5-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

pytomlpp-1.0.5-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (2.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

pytomlpp-1.0.5-cp36-cp36m-macosx_10_9_x86_64.whl (179.4 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pytomlpp-1.0.5.tar.gz.

File metadata

  • Download URL: pytomlpp-1.0.5.tar.gz
  • Upload date:
  • Size: 965.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5.tar.gz
Algorithm Hash digest
SHA256 97baef8a5af1455cf82eb1ec3627b3c088617fc8a36a8758d8339ff8611073ad
MD5 54bec976a61d97f6b1c6c4c91920d6e6
BLAKE2b-256 f18850f77becf2bd825633ce117bb92024e7dd814ce7bcda78452317cf81729a

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.0.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 174.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 01a1d79ab954d655dda33c2031c1e3193ba37a7311909a46fbba2d2cd6b5ce47
MD5 ef975bce8e93363095d97013d7d19742
BLAKE2b-256 e60244de575e5a62d9e8481de2a83a5e57d147ea7978486143096eda00115683

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.5-cp310-cp310-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d3c8903f424446cfbf13ca624eb5ff7b25752648c6323211982c67e8c2de5bc5
MD5 ef262155163a0cc08fc2dcbe78b7ee8d
BLAKE2b-256 d97f3627185f4647fa622225d27cdbdf443b1ac75ec348498f9e190b2bd2f6d4

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

  • Download URL: pytomlpp-1.0.5-cp310-cp310-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 1542d266f7210afb4f0286e6d3bf4427c6853ab0ba2022e58b3a0ba55dbf4495
MD5 4d9496d69c606914b76230b443515316
BLAKE2b-256 3f97a8b30b9d25731130178a6325d126456dc773a1fb0afe9fc4c9279908f1c2

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6d082b7cfaeb578794e0099ae33d347fa35f0590984de9afb627348b1dfdfd98
MD5 f876185731bcacc2a4b48c35055fa9ee
BLAKE2b-256 295d9badea2e35459c469ca74d8409d2af8f3f794b4ef292b87ef4ad943d6bc5

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d9ae60ee525ac8b709a89b01a89dbfac7928b0f647072301515da904ffc1fc32
MD5 79ace468eb5fa2e5d0f8e5fdad1f22b9
BLAKE2b-256 afbb898ebeec8d5225710b42ca4f2799170ec2ef1119d39730e8b3f9b4c22582

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: pytomlpp-1.0.5-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 178.0 kB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 47776f4e5a4abd406ca3671b8a06363f5c37472e395c34d7e723de32d73c8819
MD5 38364e349e17638302070595317548a9
BLAKE2b-256 33731b139011a6f049365aa47eb9e607733a4386a53dd96486ed477773b36ed2

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.5-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 180.6 kB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5914a132caabc51b00f345e3e9240a787c81420d5fdac88ee0f2f3d536fc1f40
MD5 4142f9ac303118c5fcc566b22ed4e5dd
BLAKE2b-256 31e8b2fd67581555f1500742747d48a138fee04027c5a307d0ded1e61ef58dda

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pytomlpp-1.0.5-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 355.2 kB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 52b229b2abfe2e9e3486ea7f3c367efcd26c6d7e5e90094410ed0af7310de104
MD5 bec12acc49108f35baa618791485dea0
BLAKE2b-256 884eb6e04c7fd9f3bf00ee18d5d461e6044f5ab1e5303eadf5bfbf55708a5bcb

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.0.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 174.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e5fbbd459102f1bc1307e48f185c9986a9c4e99c6f8cd4fe117328cba83c77ea
MD5 6d1a32826bfdc6a09e18c3c7ec80d8d5
BLAKE2b-256 52be432482cf4ca876891c858e9a99bcbf7776a456890fd616ddb8e70364748e

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.5-cp39-cp39-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a1f18a731935dcc925bea2bfd16578d1c53e0c50e4516eaf74f01c63f3e205e2
MD5 e2b1c3731a81282c3a8e89f35be18189
BLAKE2b-256 2b102b0ba0597e9885ba0835951d53953b93b150574a9072ea05ac742a504910

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

  • Download URL: pytomlpp-1.0.5-cp39-cp39-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 89ea37add9e0a5f283b3d7bdacd70e35cf61ec1dee09e6e444342a162db105f1
MD5 0adea4dba0ab51327cb7ed7b683a4390
BLAKE2b-256 5aac4481c22e1722e6668fe202928be3648a2bad936af51013cd9d8747df9db2

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a0ca8e2d02ac28ff90d54dd47d75425113c558c337345eec95d9297373424b3f
MD5 c534257a0d00de3df648c127e654c883
BLAKE2b-256 0e53fc8b57b0974b88c5e418fcd5eaf1a5bc82fede31327cc1efbd504243d84c

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9f4e4c200eb1cfb8861ca3022cb9f270c20957350a15c97c950e7218eed3f7f0
MD5 c77e8848526233d22922799c87eb35de
BLAKE2b-256 7edbfb896c1c4c4d1cb6b7a46257ef84ba3a5f61b4fab7818ab7bcf6b0d4ee25

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: pytomlpp-1.0.5-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 178.2 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a3ebadedfe462054f1402523405d78ec93b6007feca66324eaf938b7a0c20338
MD5 3b5cab9585d95310b7f58aedd41f841c
BLAKE2b-256 c2ecc124eada244ac1ca31ebafa5777da4c5421a6cebe9cbd90d438a680305ba

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.5-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 180.7 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 956021f5996cc3ef415440127914147899ee57bb512e0aeda57d179041c2c0b5
MD5 e86f035adc4e87437bfccbd4d22fbd85
BLAKE2b-256 bb1248efa0ff6395413fb557ce9face01a5805637cabc5e3c8ddc7c5fb4630da

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pytomlpp-1.0.5-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 355.4 kB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 96879f06e5bb1cb9a87b55f92b61d734dd46466ad58f499a9078a4b4f67c9277
MD5 3faa36f40aeb548a06414d429b8a1194
BLAKE2b-256 feed0122e6ebac8fbedb8d9f2d71d7fc3e83d57f5ffc247b94d4c22ed1764802

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.0.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 174.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9ef9121f217ad472106ceae7133d25fdf5596ca7eccebafd30d48910ac511664
MD5 4e345519bd2b7af754b7e3eaa35e64d4
BLAKE2b-256 6f6ae1a1418127997567413ae783bda664d924f4a523813433a998cb30425689

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.5-cp38-cp38-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 17fd053883f36cb439f7e58b4583364b72f9174f5ce7fcef354f65663404b828
MD5 05f9be28a70e5dfd204880aa58566aea
BLAKE2b-256 17ae39b86d84ccc92317071c97e70e999c55a7487a66b9fadfa0a0ec9286cc08

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

  • Download URL: pytomlpp-1.0.5-cp38-cp38-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 afe5831e6d0498ab4563ec6661dc586e20358004f6689b77ac71d1048a3ff7ab
MD5 478073da195b45ceb557b50c5c1e09c8
BLAKE2b-256 3a91a3bcd86128484265e6ab37b847de80d54bb7953acc8d9589682ab4845401

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.5-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c1a07ff397b9a316a66101a934e4ec15c0d5791b51ebd1b61d35dda5fc55abcf
MD5 2c43d60543a19077f23274ef8ccb1e88
BLAKE2b-256 20664ea616e46728093b86d2cefe617f08284444b2080858172cbc685a8db1a0

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 dc726a8409369ef07ef228e4202fd880f2c75ed96407726cd59542d76883fc74
MD5 4228a9dbf74c0c663de5cde5b27a33ea
BLAKE2b-256 9679a2b0293b6ed8339ba30106d9abaf1070b7e41fa818e55ea6bfcd2a73bf0f

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: pytomlpp-1.0.5-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 178.0 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dcaac6647b66311fba9d659e718928480ba0a83f33f602d66762114e67802f9e
MD5 082500fdac31eb4c0900e0a74af73199
BLAKE2b-256 c33faa119909ef0b83812cf6233ceb6db99223c9f57477bb5cc8321c25a65acb

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.5-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 180.1 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f7339d1fa6ac9f80c4c5a798af6639cc082162bb87d5a0ec96445f44eed12752
MD5 837b42fb48fb09b4282719958de3afc6
BLAKE2b-256 c51452dc85b416eb6916c2cc23fb22ed5b78197a6488d7ab59b1f42b06ac20b6

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pytomlpp-1.0.5-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 354.5 kB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 023d83a479ac4093171e496750959d93f62a3833af628e86f5e3a8ef280662c3
MD5 b7f1686fbabdd1283eb60e3b8ace2b17
BLAKE2b-256 86b8246d4d835d5e18702a4143e725c1a154df5ec0b1ec181b704f6b0022de2b

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.0.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 175.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 800f8ebecb59bc7e83c8e5c20fa22a5926691a1201f2fc6efba13fc17bbfea4a
MD5 1ca82ac840ab6881f4eafe6366d6b357
BLAKE2b-256 8cc12cd8bafa2f56980bef1d33064aa83702519c17f93c75476e80ea814bacfe

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c80e52942269bd0e38cd247c65ca813d3f5d01b2541dea046c1f54617d097afc
MD5 380b1260918bb9ff0e417ee9df746e6a
BLAKE2b-256 07b1f4c76a7347ab374d68be64bbbae3e9dbff5e815eac78e09c05074481ddae

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: pytomlpp-1.0.5-cp37-cp37m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 46bad752f8230d1aec4ea3aec63d6e100c2e40f830560cf1d1603cc333a2b7c3
MD5 3c4bdc646791184179a0df6b2fda4c52
BLAKE2b-256 889dbb145f4ecde126a7885585a5c9cfa744da21b6efdfc0cc19235925a4bf77

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.5-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1754e881c3065ee5086b30b8b4fad0c051f6bdfc8e6ca0ca51f82606c12bd9f3
MD5 16c0a0da25f96b56c8321f5d6df02d9b
BLAKE2b-256 b5952793faab905c37b17ede0df126b66513ae01acfdf351e1c89dea9aecdb25

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.5-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 81497420d329a2e99f49f6a644bcc38f902bcc132354a9dae4c5d389fce9975a
MD5 627dafc5e3fd956bbbeb2e9b2e38cfad
BLAKE2b-256 8f704962a2a72181d6ff9456b4bbd96b506c4c0818685da8cc3db9e4fc906fe6

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.5-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 179.4 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c5f146cdc8bb041772e30b71aa5344ab3b9d4846d787e9b4068dcc76e6031593
MD5 bc2e9677d175d2b816dfac62e2b7c042
BLAKE2b-256 550144c254ab29834c94389e8c9d4767a0b6c789d71b8f41676c07465272084a

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.0.5-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 175.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 9493d33d09dfcd354e18f463bb4842988d32c266d8c0523fe40de5c1177c1ba7
MD5 8adf3049da4f7d011681da9453dd9ef5
BLAKE2b-256 06f9287e8f48c69f4af350a353101d93b94cdf5f4e98394ae15c2371c21a87b6

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.5-cp36-cp36m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 39e1efce4849f832d278ad609d5d36048e7b697dc9ca30e8c886e7ef2891f38a
MD5 950f9744a95559919767d9863aec88fd
BLAKE2b-256 90b4528f6064bd9a44d697b267dd8932dec3015f94f7b70562fd84261d39ac61

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: pytomlpp-1.0.5-cp36-cp36m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 03c7f3edff7ce45a6fcb071d7519fb1bedfc4f9ed57dea907a2eeff971126f53
MD5 b2249c35caa09ef869fa2fafa4f3aa68
BLAKE2b-256 2b2013b06974589b5ba29b5f7d9593503903c565645d3861142a2a68c5fcba92

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.5-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9576d315793f118ad1216428c47aeddee004cbe03e4de4e15656765eb44e77f4
MD5 f68d9c3cee49f8ccae2958b569058b82
BLAKE2b-256 636fa8815d483ae73608b726d9fca5eb7885b793247370ed0da0d716db1de0c6

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.5-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b66cde03766505a34068aa0f5bfaa619399081e171f497b27f3ac05caffed072
MD5 5268bfee04c31b93564fcabeeb1cd801
BLAKE2b-256 1a5eb6f90b306fbc7c7858798740c6158f956fb666007689e7af7c61fc6164d9

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.5-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.5-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 179.4 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.5-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d0d3f80fcad7f2e92cd60bb5472204bdc182f3c9fc6171c962b3bacc0f1b45dc
MD5 74c9dedafdbe21e02af8cb211de7d795
BLAKE2b-256 9a3e61b69e1e81501407e416dc60b64859e77d5e4e0f6a6eac384989da016542

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page