Skip to main content

A python wrapper for toml++

Project description

pytomlpp

Build Status Conda Status PyPI version

This is an python wrapper for toml++ (https://marzer.github.io/tomlplusplus/).

Some points you may want to know before use:

  • Using toml++ means that this module is fully compatible with TOML v1.0.0.
  • We convert toml structure to native python data structures (dict/list etc.) when parsing, this is more inline with what json module does.
  • The binding is using pybind11.
  • The project is tested using toml-test and pytest.

Example

In [1]: import pytomlpp                                                                                                                                                                                                                                                                            

In [2]: toml_string = 'hello = "世界"'                                                                                                                                                                                                                                                             

In [3]: pytomlpp.loads(toml_string)                                                                                                                                                                                                                                                                
Out[3]: {'hello': '世界'}

In [4]: type(_)                                                                                                                                                                                                                                                                                    
Out[4]: dict

In [6]: pytomlpp.dumps({"你好": "world"})                                                                                                                 
Out[6]: '"你好" = "world"'

Why bother?

There are some existing python TOML parsers on the market but from my experience they are implemented purely in python which is a bit slow.

Parsing data.toml 5000 times:
  pytomlpp:    0.846 s
     tomli:    3.317 s (3.9x slower)
      toml:    5.697 s (6.7x slower)
     qtoml:    8.473 s (10.0x slower)
   tomlkit:   43.250 s (51.0x slower)

Test it for yourself using the benchmark script.

Installing

We recommand you to use pip to install this package:

pip install pytomlpp

You can also use conda to install this package, on all common platforms & python versions. If you have an issue with a package from conda-forge, you can raise an issue on the feedstock

conda install -c conda-forge pytomlpp

You can also install from source:

git clone git@github.com:bobfang1992/pytomlpp.git --recurse-submodules=third_party/tomlplusplus --shallow-submodules
cd pytomlpp
pip install .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytomlpp-1.0.9.tar.gz (974.8 kB view details)

Uploaded Source

Built Distributions

pytomlpp-1.0.9-pp37-pypy37_pp73-win_amd64.whl (174.1 kB view details)

Uploaded PyPy Windows x86-64

pytomlpp-1.0.9-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (201.7 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

pytomlpp-1.0.9-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (216.1 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

pytomlpp-1.0.9-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (156.2 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pytomlpp-1.0.9-cp310-cp310-win_amd64.whl (175.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

pytomlpp-1.0.9-cp310-cp310-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pytomlpp-1.0.9-cp310-cp310-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pytomlpp-1.0.9-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

pytomlpp-1.0.9-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (2.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

pytomlpp-1.0.9-cp310-cp310-macosx_11_0_arm64.whl (178.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pytomlpp-1.0.9-cp310-cp310-macosx_10_9_x86_64.whl (180.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pytomlpp-1.0.9-cp310-cp310-macosx_10_9_universal2.whl (355.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pytomlpp-1.0.9-cp39-cp39-win_amd64.whl (174.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

pytomlpp-1.0.9-cp39-cp39-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pytomlpp-1.0.9-cp39-cp39-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pytomlpp-1.0.9-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

pytomlpp-1.0.9-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

pytomlpp-1.0.9-cp39-cp39-macosx_11_0_arm64.whl (178.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pytomlpp-1.0.9-cp39-cp39-macosx_10_9_x86_64.whl (181.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pytomlpp-1.0.9-cp39-cp39-macosx_10_9_universal2.whl (355.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pytomlpp-1.0.9-cp38-cp38-win_amd64.whl (175.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

pytomlpp-1.0.9-cp38-cp38-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pytomlpp-1.0.9-cp38-cp38-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pytomlpp-1.0.9-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pytomlpp-1.0.9-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (2.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

pytomlpp-1.0.9-cp38-cp38-macosx_11_0_arm64.whl (178.4 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pytomlpp-1.0.9-cp38-cp38-macosx_10_9_x86_64.whl (180.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pytomlpp-1.0.9-cp38-cp38-macosx_10_9_universal2.whl (354.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

pytomlpp-1.0.9-cp37-cp37m-win_amd64.whl (175.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

pytomlpp-1.0.9-cp37-cp37m-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pytomlpp-1.0.9-cp37-cp37m-musllinux_1_1_i686.whl (3.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

pytomlpp-1.0.9-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

pytomlpp-1.0.9-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

pytomlpp-1.0.9-cp37-cp37m-macosx_10_9_x86_64.whl (179.8 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pytomlpp-1.0.9-cp36-cp36m-win_amd64.whl (175.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

pytomlpp-1.0.9-cp36-cp36m-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

pytomlpp-1.0.9-cp36-cp36m-musllinux_1_1_i686.whl (3.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

pytomlpp-1.0.9-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

pytomlpp-1.0.9-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (2.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

pytomlpp-1.0.9-cp36-cp36m-macosx_10_9_x86_64.whl (179.8 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pytomlpp-1.0.9.tar.gz.

File metadata

  • Download URL: pytomlpp-1.0.9.tar.gz
  • Upload date:
  • Size: 974.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9.tar.gz
Algorithm Hash digest
SHA256 330c5d0e82563400695c3ea3fb0e9f07ec4747a469d58d3830e610b4a5aedc7d
MD5 e2b07abf46faea53bb2bdd2c74bba7f5
BLAKE2b-256 dcf23b9dd82cbf54f934afee83ee0dd1721049606e4b3af8e0fdc2f9794eadd0

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 174.1 kB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 abd96ac39a930351deea931699370558b795d8a79f79fa456f9b532485b54f5d
MD5 79eb2210f4d1d108fc11e2ca2a4830be
BLAKE2b-256 1da451f2c3b4208b855e26eacbaca985bc8aa11ba97b2e924317136d8ef8ed5c

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.9-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 20906c2413d3b59025507ea2b455a9243bf2169c81e91c4de8c4a82f99098677
MD5 078ee50795341f4abcba7c85fbb52019
BLAKE2b-256 79cbbc55aa2685a26b944fd39eca75846b864775e4de439ff305705edaa40a8d

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.9-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 160ff6081b7d95c94d93bfc0f6b4bf65f37773811e46b4aa404c92e9e0223810
MD5 ea4779b35242805e4cb630d1aec93252
BLAKE2b-256 8e905aba7a7e312d750353c91309a007fd9c943a9fdafe9aaf5555f43e839af1

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 156.2 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6db1247ab5baaee9e1484772b21e90bbca4bb2d4240bce108867e0d007bfa4c6
MD5 5f1aef8a08d418c0009132446eeb8e80
BLAKE2b-256 efe89eb23239eedd8920d3985fd53a2664ff338eb8c0e9b098b7844469694df8

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 175.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f044617ab167567faaefc5344a2d531efd0d14091449a3b1c6dea89be0de2970
MD5 0cfef28c6d2f8fb7ab82691639af8471
BLAKE2b-256 965ac4b053d39a112a9ea1a811a461aa542c921daa1bbd7934bd6f843a3f9a06

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-cp310-cp310-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0214cfcc13056754355ac692840235a3e6e3d8289353a9c7cc3929efa55c3043
MD5 7ba54b542c1308bfe6443122d9971fdb
BLAKE2b-256 0e0cec08a9e476c60aa35d11b7f3ba50824f9a0b6d5b6005c1647300fc7203dc

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-cp310-cp310-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 08f66aa966ada2ed3fd691fb0a7160014c36e91d5deb0853d9ff7bbde53c7da3
MD5 f9a94ad143b02740e32d149da1d094d8
BLAKE2b-256 7649e6655fb19f35fee9ebf17ddce09f253b5c0c2b36f71867ccde1b105adc4b

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.9-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 330118f09a376ef1aa597d1f6c5120207e107508d5557084083c61cb5d48caec
MD5 1a4c0440901db87cf64030e6ebfa6145
BLAKE2b-256 5c4143ff63a3ff6f9532f53663a1cd933cb84c011cbf3d8f845832488c1dd9b1

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.9-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 facbd310e091bee3b59e89257b460d04c220e380177bb21a97ef97174b058a23
MD5 5d2b0e580769229b1e83ed592145bdc1
BLAKE2b-256 af45819fefef322f3b299dea272e96fca4c6e3653c640e343ef5c710ee6878b7

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 178.4 kB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bf24c7078c4a163676ffb63e4e30dd9d2828e316b4b9c5b49429b42bf0fb3677
MD5 afe334d0094776695d3e1456b084c41b
BLAKE2b-256 900c235a64b7a07466dfb0d4157f740c4aa2f1685a641d77c46b5e67f8f81f74

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 180.9 kB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 10cdfc7d93e8db05fd21e54d645c11180f0eda274e998fbc13c34e99fb90997b
MD5 0466fbd9907bce56449e631dc5175539
BLAKE2b-256 a7dbb387acd8546e8066b9bd2a48dd4b518f6b19c62d83fec6a1d2588da2e710

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 355.5 kB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d0d56bf8f47dd6735783636226e534a9962df82bb6cea20e9881116928923a66
MD5 3fcf75b236abda747df3dfb13eecb0ed
BLAKE2b-256 f9277603757f9cbcf7d545c8ae09cc16f44e5d19025c852b805d5e75aa877ea6

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 174.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 feb4d3662c82e464ef4cda1e1188ab9e12065b24481d56e9f70769a5555fbce8
MD5 ef35eda331b3a38f34b9b5364272656b
BLAKE2b-256 ebd727b53e9258b1c9523255ebe19da661b74c36bbdddc42d6bfe49c9be5197b

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-cp39-cp39-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a1f5cc4e622f10bc16a672a0c0d939108b690e18c086d09969d8237f392941d3
MD5 66118bd0254ee3b55586f4ac03c7d7a9
BLAKE2b-256 72efea7bb568c99a5ddad387213c9b119633477f36744e0ed995e54bbed2228f

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-cp39-cp39-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 80a497c0995fc40a744f2afbeea7bf21fc20aa3f878969bbcca75ed62594e757
MD5 b1580794a1e492dd603c4d002a390b71
BLAKE2b-256 b8cb7090c58b3c139df8af44273a1e19db637aba579653f2c5d7b69027465349

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.9-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b538bcb1a689ece0578f03288a544759667b557100ecc4e7d45126a541d69167
MD5 09692a5967ee1389c438f324ef62ea36
BLAKE2b-256 781e213c05547676dc4e3e6dfb78d28f830f751e05798cf59a8a0d55fd21b1ec

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.9-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 3018340e91cc2e79ca7db0b229d0f0e604366797a3b69c800260a3097b0a3115
MD5 91a5a5d003db77eddef9189070c3206d
BLAKE2b-256 7eea42dfe41f72ef43a8f9b6f5f1f9c709d62a15f8239829157bd37a8c67faca

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 178.6 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6f8e61b0b37b3b55af8cd25780e4f9a268e19af6951c1b626eea7a622e8cc6e9
MD5 020aac048568ec05ff188d067435611f
BLAKE2b-256 e6f01db240080aa00bd8fb673689bc280d3989f73db5d86e630e15968ff2020e

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 181.1 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aff36d954a3b675de9d69ff46ce13fcb04e178c5dd3e2627e9fcb5585e36a0a4
MD5 ef6d531ab8c4582dc7e40cb3a840ee7e
BLAKE2b-256 01edbbd2c5df940be2c9d75b8d206f39b3b72e90eb202cad4857f2909fcc91d2

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 355.8 kB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 998c4bd7324d309f37c12f232da5e5379573a048d5b43f2a7498bb1cb10560c0
MD5 c58d4274706ba6a0584f42236874c2d7
BLAKE2b-256 18d49f622b9925370381c54cca30d4780ebcfc501a2e76bfec0419507e7ade39

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 175.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 30084f2d914cce3775c242911a0eb64e62a40012a31d881fc0854485a387a2ae
MD5 52d2aa849733d3c4436159ee79eeae91
BLAKE2b-256 6f646e053ca7569baaced97012c6d0c25f216a3685821d91de10166a168b63cf

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-cp38-cp38-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0b834c48602477d293e684318a30b298615c9b77658c2f69202d8d5d8be44609
MD5 bd78c81af78200d34c7d47f42a0b832c
BLAKE2b-256 ac17a96a24dba7ecb32478121c2ea3a9162d24164940d94e95e891043a68c573

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-cp38-cp38-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8746f95009283fadc8f8073530cda59df46fe67bc4e10c78c940e07c6c1bbe5c
MD5 481aebfd61ecbe2a71f3ac5a09d941e0
BLAKE2b-256 06cb871d1a18659c77027e3b72b80f85ee4bab14bd6e7e049d63fbd36013acb5

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.9-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 abb06539b7b656d169b495745fa26df0ca1707f3f8d9123b8c11ab04d92452ac
MD5 43b0f27bfabbfb3dcc762135d6b8fbe6
BLAKE2b-256 1f9a58fdab3791a15df874272f96b2406fc69bfbcc0a53dda363fd580269bcef

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.9-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 0b1df32871fca7453e8e5acad699d6d1a1ed68a3fce87f7bfd7ce6970a4abd6f
MD5 2b4ccc8b9feefc78bc464335e57ecabc
BLAKE2b-256 898ac781dcd4ed372af4e6c921243bc85167c930cb05f6026e46c62e00bafa1a

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 178.4 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 585b61c38e5c4183eb4b3569d86252478f8488c949c5d2da73c2ad26b78b8a81
MD5 7630ff6f5f261e5c30581de782931a90
BLAKE2b-256 8ae419b3ca8a7dad317be8161e5320f21a9cbf743d6f490a5a5d79fcc11c73af

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 180.4 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 611753a7a9fd6cbe4beb32573145671bc190331a001310d83ef316a068ff1912
MD5 7fcd3676ed4c93405266428823a8a240
BLAKE2b-256 0a2a2d4d58a729acb3cf74886f8db5982128977835bf49c256d39880dc75e446

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 354.8 kB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d28cffa1b942a94ba4228657d6c69da1bad5aa4221c9aa4a403de472f00634e2
MD5 251668b075af323b1d646acd3f9fffb5
BLAKE2b-256 f6e8e975887ac66a712d097e548d8dd81bf8be15aadec0e367722317d8cde833

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 175.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 56e23a757ecffc29de00700a87cc528acbc125ae2632752a330d338190525619
MD5 d77d48ba47fd322f7bd95ce81d42f91c
BLAKE2b-256 987cf259962b3c51cdf8853bc215a9c1fde6752675c7d16e80cc193791413341

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-cp37-cp37m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 92e24d6a679ca08ce9d6ac4c170353a8ba55f1cdca69773dd441276c99426ba7
MD5 8e4510c6fc6c776ed8bd5605df81e5f8
BLAKE2b-256 b96f4c533be7091e0fe48e71ea4e643521e54161240fd8e662ad3411b00de541

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-cp37-cp37m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 29081efc1ef255272fa2843547ff3c21c4d409b1d852c83b0f3e65666b4299bc
MD5 0d1b84327a3bd7a776dbddcd93e24ed4
BLAKE2b-256 46150bdf2ec20f2423104f3a755de0bf165e89f8d91ecb92354533eeb5a9161d

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.9-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6fb304fedbf506efa90c36e270446e53fe8154e831a56f54bc2e08fecadbca97
MD5 f1f898076891146e1597af926dda75fd
BLAKE2b-256 a2f603aae5e788e6d417930efdee1fdd78e39f8d9678cf2406f7f66a0ad7a816

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.9-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 5b385840206197e69d3e37760d2f732593f53a372e92bcb1f5f66828733933b4
MD5 e78b700433da8e4ff169a52c3e7e0fc5
BLAKE2b-256 ed343f61e63e75168b54243493eff2656672bfc18b5a6d3f1e41a155b1d6e087

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 179.8 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c15b227a9631193e09596612baecf17a5e9f7b8020308b94b5e79459ebd91f54
MD5 e2e242422079c2853499cb2b21283996
BLAKE2b-256 f2a9d97d33b4005579eb6b5d7efac495f4a7a000544717c970dd922a9f8e16fb

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 175.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 2ef9c5201068c14d76e232784d37231146210e21febccf5af466795d8b0fd408
MD5 cff292da7c3671efcc4d78766009f7c9
BLAKE2b-256 44258adf8ed8988ac39007860b48ec9400e914ef2253b4fd4d827436ef6c9294

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-cp36-cp36m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d079689cf4f1abc4b63b07bccf341c672f505fa411ba88335f3e88044c6c4f2e
MD5 fbcf07962a77855de10c46e8be9b5d68
BLAKE2b-256 85689979b323383ffff209d92963146637ce711c611264b020ec71057c237e3d

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-cp36-cp36m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4004756df2c0c005384ad08def9cc2800896c9b2ae511a11d65ce86d80fe917d
MD5 4d99d3413fa2c31608f4a6bc5d5f1058
BLAKE2b-256 c1eef32b352ae42f78469c7998b9dedb885ab438e819626eaa98dda78aeec94a

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.9-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6e6c92a75594568b5277df6294c1c9940b45336f154204656791d049c17197ab
MD5 13a814a43431e7c29c3e348263c00443
BLAKE2b-256 3428ac9fe7c13e0155209397ae1eb16ef44e88d643dca9820d59a7e13cad1d6f

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pytomlpp-1.0.9-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a5d6220659ca45966f518f717044d852e4ae4b835a21190332466cc0144362f4
MD5 8136bca4e47a1546d30daea1893d2f74
BLAKE2b-256 74fead0136d00039102cbf0acad2e71b5f5bfedaaa15786a6ca2d0b36fb7428a

See more details on using hashes here.

File details

Details for the file pytomlpp-1.0.9-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pytomlpp-1.0.9-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 179.8 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pytomlpp-1.0.9-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d639b6f3d4bc2224d9596ae6bd665718ed4589f415c27070d4e42bd304277610
MD5 3f49cec1c957b40939f5e2a444989015
BLAKE2b-256 15b4199700396e12e2ec41bf1558508bcff6ca1c576e985586592dc65145492a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page