Skip to main content

Conditional random field in PyTorch

Project description

Conditional random field in PyTorch.

Description

This package provides an implementation of conditional random field (CRF) in PyTorch. This implementation borrows mostly from AllenNLP CRF module with some modifications.

NOTE: This software is still in alpha version; every minor version change introduces backward incompatibility.

Requirements

  • Python 3.6

  • PyTorch 0.3.0

Installation

You can install with pip

pip install pytorch-crf

Or, you can install from Github directly

pip install git+https://github.com/kmkurn/pytorch-crf#egg=pytorch_crf

Examples

In the examples below, we will assume that these lines have been executed

>>> import torch
>>> from torchcrf import CRF
>>> seq_length, batch_size, num_tags = 3, 2, 5
>>> emissions = torch.autograd.Variable(torch.randn(seq_length, batch_size, num_tags), requires_grad=True)
>>> tags = torch.autograd.Variable(torch.LongTensor([[0, 1], [2, 4], [3, 1]]))  # (seq_length, batch_size)
>>> model = CRF(num_tags)
>>> # Initialize model parameters
... for p in model.parameters():
...    _ = torch.nn.init.uniform(p, -1, 1)
...
>>>

Forward computation

>>> model(emissions, tags)
Variable containing:
-10.0635
[torch.FloatTensor of size 1]

Forward computation with mask

>>> mask = torch.autograd.Variable(torch.ByteTensor([[1, 1], [1, 1], [1, 0]]))  # (seq_length, batch_size)
>>> model(emissions, tags, mask=mask)
Variable containing:
-8.4981
[torch.FloatTensor of size 1]

Decoding

>>> model.decode(emissions)
[[3, 1, 3], [0, 1, 0]]

Decoding with mask

>>> model.decode(emissions, mask=mask)
[[3, 1, 3], [0, 1, 0]]

See tests/test_crf.py for more examples.

License

MIT. See LICENSE.txt for details.

Contributing

Contributions are welcome! Please follow these instructions to setup dependencies and running the tests and linter. Make a pull request once your contribution is ready.

Installing dependencies

Make sure you setup a virtual environment with Python 3.6 and PyTorch installed. Then, install all the dependencies in requirements.txt file and install this package in development mode.

pip install -r requirements.txt
pip install -e .

Running tests

Run pytest in the project root directory.

Running linter

Run flake8 in the project root directory. This will also run mypy, thanks to flake8-mypy package.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

pytorch_crf-0.4.0-py3-none-any.whl (11.1 kB view details)

Uploaded Python 3

File details

Details for the file pytorch_crf-0.4.0-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_crf-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 1e7126d101337cc2505bd10f5cbc57dc3088d8de7ec624872991daf907584a82
MD5 59e0b5b324b50b8ab3306cb81edeae37
BLAKE2b-256 b57aeb0abbcf7e2ab429a20922f795feb28bf497d5dec9f3439e96b7ed29266e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page