Skip to main content


Project description

<script type="text/javascript" src=""></script>

Pytorch iAlgebra


Pytorch iAlgebra is an interactive interpretation library for deep learning on Pytorch.

Pytorch iAlgebra provides an interactive frame for interpreting a group of deep leanring models using a set of interpretation methods.

iAlgebra Operations



$$ [\phi(x)]{i}=\frac{1}{d} \sum{k=0}^{d-1} \mathbb{E}{I{k}}\left[f\left(x_{I_{k} \cup{i}}\right)-f\left(x_{I_{k}}\right)\right] $$


$$ \left[\Pi_{w}(x)\right]{i}=\left{\begin{array}{cc}{\frac{1}{|w|} \sum{k=0}^{|w|-1} \mathbb{E}{I{k}}\left[f\left(x_{I_{k} \cup{i}}\right)-f\left(x_{I_{k}}\right)\right]} & {i \in w} \ {0} & {i \notin w}\end{array}\right. $$

Selection $$ \left[\sigma_{l}(x)\right]{i}=\left[\phi\left(x ; \bar{x}, f{l}\right)\right]_{i} $$


$$ \left[x \bowtie x^{\prime}\right]{i}=\frac{1}{2}\left([\phi(x ; \bar{x}, f)]{i}+\left[\phi\left(x^{\prime} ; \bar{x}, f\right)\right]_{i}\right) $$


$$ \left[x \diamond x^{\prime}\right]{i}=\left(\left[\phi\left(x ; x^{\prime}, f\right)\right]{i},\left[\phi\left(x^{\prime} ; x, f\right)\right]_{i}\right) $$

Supportive DNN and Interpretation Models

DNN Models

Model Performance on dataset Mnist

Dataset Models
Mnist LeNet-L1 LeNet-L2
Accuracy 98.866% 99.020%

Model Performance on dataset Cifar10

Dataset Models
Cifar10 Vgg19 -L1 Vgg19-L2
Accuracy 98.866% 99.020%

Interpretation Methods

In detail, we implement the following interpretation methods as the identity in Pytorch-iAlgebra.


Library dependencies for the Pytorch-iAlgebra. Before installation, you need to install these with

$ pip install -r requirements.txt

Then Pytorch-iAlgebra can be installed by:

$ pip install pytorch-ialgebra

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

pytorch_ialgebra-1.0.1-py2.py3-none-any.whl (28.9 kB view hashes)

Uploaded py2 py3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page