Skip to main content

The Mighty Monitor Trainer for your pytorch models.

Project description

# pytorch-mighty

The Mighty Monitor Trainer for your pytorch models.

### Quick start

  1. Install [pytorch](https://pytorch.org/)
  2. $ pip install pytorch-mighty
  3. $ visdom -port 8097 - start visdom server on port 8097
  4. In a separate terminal, run python examples.py
  5. Navigate to http://localhost:8097 to see the training progress.
  6. Check-out more examples on [http://85.217.171.57:8097](http://85.217.171.57:8097/). Give your browser a few minutes to parse the json data.

### Articles, implemented in the package

  1. Fong, R. C., & Vedaldi, A. (2017). Interpretable explanations of black boxes by meaningful perturbation.
  2. Belghazi, M. I., Baratin, A., Rajeswar, S., Ozair, S., Bengio, Y., Courville, A., & Hjelm, R. D. (2018). Mine: mutual information neural estimation.
  3. Kraskov, A., Stögbauer, H., & Grassberger, P. (2004). Estimating mutual information.
  4. Ince, R. A., Giordano, B. L., Kayser, C., Rousselet, G. A., Gross, J., & Schyns, P. G. (2017). A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula. Human brain mapping, 38(3), 1541-1573.

### Projects that use pytorch-mighty

Project details


Release history Release notifications

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pytorch-mighty, version 0.1.0
Filename, size File type Python version Upload date Hashes
Filename, size pytorch-mighty-0.1.0.tar.gz (34.4 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page