The Mighty Monitor Trainer for your pytorch models.
Project description
# pytorch-mighty
The Mighty Monitor Trainer for your pytorch models. Powered by [Visdom](https://github.com/facebookresearch/visdom).
![](images/training-progress.png)
### Quick start
Requires Python 3.6+
Install [pytorch](https://pytorch.org/)
$ pip install pytorch-mighty
$ python -m visdom.server -port 8097 - start visdom server on port 8097
In a separate terminal, run python examples.py
Navigate to http://localhost:8097 to see the training progress.
Check-out more examples on [http://85.217.171.57:8097](http://85.217.171.57:8097/). Give your browser a few minutes to parse the json data.
### Articles, implemented in the package
- Fong, R. C., & Vedaldi, A. (2017). Interpretable explanations of black boxes by meaningful perturbation.
Used in: [trainer/mask.py](mighty/trainer/mask.py)
- Belghazi, M. I., Baratin, A., Rajeswar, S., Ozair, S., Bengio, Y., Courville, A., & Hjelm, R. D. (2018). Mine: mutual information neural estimation.
Used in: [monitor/mutual_info/neural_estimation.py](mighty/monitor/mutual_info/neural_estimation.py)
- Kraskov, A., Stögbauer, H., & Grassberger, P. (2004). Estimating mutual information.
Used in: [monitor/mutual_info/npeet.py](mighty/monitor/mutual_info/npeet.py)
Original source code: https://github.com/gregversteeg/NPEET
- Ince, R. A., Giordano, B. L., Kayser, C., Rousselet, G. A., Gross, J., & Schyns, P. G. (2017). A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula. Human brain mapping, 38(3), 1541-1573.
Used in [monitor/mutual_info/gcmi.py](mighty/monitor/mutual_info/gcmi.py)
Original source code: https://github.com/robince/gcmi
### Projects that use pytorch-mighty
[MCMC_BinaryNet](https://github.com/dizcza/MCMC_BinaryNet) - Markov Chain Monte Carlo binary networks optimization.
[EmbedderSDR](https://github.com/dizcza/EmbedderSDR) - encode images into binary Sparse Distributed Representation ([SDR](https://discourse.numenta.org/t/sparse-distributed-representations/2150)).
[sparse-representation](https://github.com/dizcza/sparse-representation) - Basis Pursuit solvers for the P0- and P1-problems, which encode the data into sparse vectors of high dimensionality.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file pytorch-mighty-0.2.1.tar.gz
.
File metadata
- Download URL: pytorch-mighty-0.2.1.tar.gz
- Upload date:
- Size: 40.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bbf6472aba49d569da92be87f74b579557e7240aa7e2e783f530ae4e5a94fb0c |
|
MD5 | d0cb270e9719f7604b7d49dd97c5fd29 |
|
BLAKE2b-256 | 569b01ba3346a46409e9b0a758f0b8cc108524f26303d3375cff407ab5599c83 |