Skip to main content

The Mighty Monitor Trainer for your pytorch models.

Project description

# pytorch-mighty

The Mighty Monitor Trainer for your pytorch models. Powered by [Visdom](https://github.com/facebookresearch/visdom).

![](images/training-progress.png)

### Quick start

Requires Python 3.6+

  1. Install [pytorch](https://pytorch.org/)

  2. $ pip install pytorch-mighty

  3. $ python -m visdom.server -port 8097 - start visdom server on port 8097

  4. In a separate terminal, run python examples.py

  5. Navigate to http://localhost:8097 to see the training progress.

  6. Check-out more examples on [http://85.217.171.57:8097](http://85.217.171.57:8097/). Give your browser a few minutes to parse the json data.

### Articles, implemented in the package

  1. Fong, R. C., & Vedaldi, A. (2017). Interpretable explanations of black boxes by meaningful perturbation.
  2. Belghazi, M. I., Baratin, A., Rajeswar, S., Ozair, S., Bengio, Y., Courville, A., & Hjelm, R. D. (2018). Mine: mutual information neural estimation.
  3. Kraskov, A., Stögbauer, H., & Grassberger, P. (2004). Estimating mutual information.
  4. Ince, R. A., Giordano, B. L., Kayser, C., Rousselet, G. A., Gross, J., & Schyns, P. G. (2017). A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula. Human brain mapping, 38(3), 1541-1573.

### Projects that use pytorch-mighty

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch-mighty-0.2.1.tar.gz (40.2 kB view details)

Uploaded Source

File details

Details for the file pytorch-mighty-0.2.1.tar.gz.

File metadata

  • Download URL: pytorch-mighty-0.2.1.tar.gz
  • Upload date:
  • Size: 40.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for pytorch-mighty-0.2.1.tar.gz
Algorithm Hash digest
SHA256 bbf6472aba49d569da92be87f74b579557e7240aa7e2e783f530ae4e5a94fb0c
MD5 d0cb270e9719f7604b7d49dd97c5fd29
BLAKE2b-256 569b01ba3346a46409e9b0a758f0b8cc108524f26303d3375cff407ab5599c83

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page