Skip to main content

Fast and differentiable MS-SSIM and SSIM for pytorch.

Project description

Pytorch MS-SSIM

Fast and differentiable MS-SSIM and SSIM for pytorch 1.0+

Install

pip install pytorch-msssim

or

python setup.py install

Usage

Calculations will be on the same device as input images.

1. Basic Usage

from pytorch_msssim import ssim, ms_ssim, SSIM, MS_SSIM
# X: (N,3,H,W) a batch of non-negative RGB images (0~255)
# Y: (N,3,H,W)  

# calculate ssim & ms-ssim for each image
ssim_val = ssim( X, Y, data_range=255, size_average=False) # return (N,)
ms_ssim_val = ms_ssim( X, Y, data_range=255, size_average=False ) #(N,)

# set 'size_average=True' to get a scalar value as loss.
ssim_loss = 1 - ssim( X, Y, data_range=255, size_average=True) # return a scalar
ms_ssim_loss = 1 - ms_ssim( X, Y, data_range=255, size_average=True )

# reuse the gaussian kernel with SSIM & MS_SSIM. 
ssim_module = SSIM(data_range=255, size_average=True, channel=3)
ms_ssim_module = MS_SSIM(data_range=255, size_average=True, channel=3)

ssim_loss = 1 - ssim_module(X, Y)
ms_ssim_loss = 1 - ms_ssim_module(X, Y)

2. Enable nonnegative_ssim to avoid NaN ms-ssim or negative ssim

ssim responses will be negative when two images are entirely different. The negative ssim will lead to NaN ms-ssim, e.g., . It is recommended to set nonnegative_ssim=True to avoid NaN results if training with ms-ssim is unstable. See tests/tests_negative_ssim.py for more details.

ssim_val = ssim( X, Y, data_range=255, size_average=False, nonnegative_ssim=True) 
ms_ssim_val = ms_ssim( X, Y, data_range=255, size_average=False, nonnegative_ssim=True)

ssim_module = SSIM(data_range=255, size_average=True, channel=3, nonnegative_ssim=True) 
ms_ssim_module = MS_SSIM(data_range=255, size_average=True, channel=3, nonnegative_ssim=True)

Update

2019.12.10

Negative or NaN results: #11, #7 and #12

The negative results or NaN results are caused by the negative covariances of input images. You can enable nonnegative_ssim or use large K2 to avoid negative ssim or NaN ms-ssim.

2019.8.15

Apply to 5D tensor: #6

2019.6.17

Now it is faster than compare_ssim thanks to One-sixth's contribution

Tests

cd tests

1. Compared with skimage.measure.compare_ssim on CPU.

python tests.py
ssim=1.0000
ssim=0.4225
ssim=0.1924

The outputs:

Downloading test image...
====> Single Image
sigma=0.000000 compare_ssim=1.000000 (275.226831 ms) ssim_torch=1.000000 (462.517738 ms)
sigma=10.000000 compare_ssim=0.932497 (389.491558 ms) ssim_torch=0.932494 (63.863516 ms)
sigma=20.000000 compare_ssim=0.785664 (266.695976 ms) ssim_torch=0.785658 (46.617031 ms)
sigma=30.000000 compare_ssim=0.637369 (275.762081 ms) ssim_torch=0.637362 (55.842876 ms)
sigma=40.000000 compare_ssim=0.515707 (236.553907 ms) ssim_torch=0.515700 (45.801163 ms)
sigma=50.000000 compare_ssim=0.422497 (264.705896 ms) ssim_torch=0.422491 (46.895742 ms)
sigma=60.000000 compare_ssim=0.350707 (234.748363 ms) ssim_torch=0.350702 (44.762611 ms)
sigma=70.000000 compare_ssim=0.295998 (210.025072 ms) ssim_torch=0.295993 (45.758247 ms)
sigma=80.000000 compare_ssim=0.253552 (250.259876 ms) ssim_torch=0.253547 (96.461058 ms)
sigma=90.000000 compare_ssim=0.219344 (263.813257 ms) ssim_torch=0.219340 (49.159765 ms)
sigma=100.000000 compare_ssim=0.192421 (258.941889 ms) ssim_torch=0.192418 (47.627449 ms)
Pass
====> Batch
Pass

2. Avoid negative or NaN results

python tests_negative_ssim.py

The outputs:

Negative ssim:
skimage.measure.compare_ssim:  -0.967184334545359
pytorch_msssim.ssim:  -0.9671849608421326
pytorch_msssim.ms_ssim:  nan

set nonnegative_ssim=True:
pytorch_msssim.ssim (nonnegative_ssim=True):  0.036789003759622574
pytorch_msssim.ms_ssim (nonnegative_ssim=True):  0.7140688896179199

Larger K2:
skimage.measure.compare_ssim (K2=0.4):  0.005528026494324062
pytorch_msssim.ssim (K2=0.4):  0.005527835804969072
pytorch_msssim.ms_ssim (K2=0.4):  0.6571949124336243

3. train your autoencoder with MS_SSIM

See 'tests/ae_example'

results left: the original image, right: the reconstructed image

References

https://github.com/jorge-pessoa/pytorch-msssim
https://ece.uwaterloo.ca/~z70wang/research/ssim/
https://ece.uwaterloo.ca/~z70wang/publications/msssim.pdf
Matlab Code

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch_msssim-0.1.5.tar.gz (5.4 kB view details)

Uploaded Source

Built Distribution

pytorch_msssim-0.1.5-py3-none-any.whl (6.4 kB view details)

Uploaded Python 3

File details

Details for the file pytorch_msssim-0.1.5.tar.gz.

File metadata

  • Download URL: pytorch_msssim-0.1.5.tar.gz
  • Upload date:
  • Size: 5.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for pytorch_msssim-0.1.5.tar.gz
Algorithm Hash digest
SHA256 7602fe42f7fe2aa644fec900c33be1c9e781065c5a45efff408562f67509b74d
MD5 9ae8d46eac9ac661c527a1fc6561ad02
BLAKE2b-256 8cea0b2c604ece65474afe4496619b7389fe64e722abfdd943a69324644913fd

See more details on using hashes here.

File details

Details for the file pytorch_msssim-0.1.5-py3-none-any.whl.

File metadata

  • Download URL: pytorch_msssim-0.1.5-py3-none-any.whl
  • Upload date:
  • Size: 6.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for pytorch_msssim-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 ad61ab12a3c27bbb2f0d2e4912ea44e8a72020d9b6899c532b4c6be26ff845b8
MD5 f2110fe949f3ebd9b94dbff53704e2bd
BLAKE2b-256 7141608f96a2bece2bed464dddc1c0fffb8e4e3a889899e280f02ca2d77a6e00

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page