Skip to main content

Pytorch supporter

Project description

pytorch-supporter

https://pypi.org/project/pytorch-supporter

pip install pytorch-supporter

Supported layers

import pytorch_supporter

pytorch_supporter.layers.DictToParameters
pytorch_supporter.layers.DotProduct
pytorch_supporter.layers.GRULastHiddenState
pytorch_supporter.layers.HiddenStateResetGRU
pytorch_supporter.layers.HiddenStateResetLSTM
pytorch_supporter.layers.HiddenStateResetRNN
pytorch_supporter.layers.LazilyInitializedLinear
pytorch_supporter.layers.LSTMLastHiddenState
pytorch_supporter.layers.Reshape
pytorch_supporter.layers.RNNLastHiddenState
pytorch_supporter.layers.SelectFromArray

Supported utils

import pytorch_supporter

text = ''
pytorch_supporter.utils.clean_english(text)
pytorch_supporter.utils.clean_korean(text)

Simple time series regression

import pytorch_supporter

from sklearn.preprocessing import MinMaxScaler
transformer = MinMaxScaler()
transformer.fit(train_df[['Close']].to_numpy())
train_np_array = transformer.transform(validation_df[['Close']].to_numpy())
#window_length = sequence_length + 1
train_x, train_label = pytorch_supporter.utils.slice_time_series_data_from_np_array(train_np_array, x_column_indexes=[0], label_column_indexes=[0], sequence_length=7)
#print(train_x.shape) #(973, 7, 1)
#print(train_labels.shape) #(973, 1)
#print(validation_x.shape) #(238, 7, 1)
#print(validation_labels.shape) #(238, 1)

Multiple time series regression

import pytorch_supporter

from sklearn.preprocessing import MinMaxScaler
transformer = MinMaxScaler()
transformer.fit(train_df[['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume']].to_numpy())
train_np_array = transformer.transform(validation_df[['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume']].to_numpy())
#window_length = sequence_length + 1
train_x, train_label = pytorch_supporter.utils.slice_time_series_data_from_np_array(train_np_array, x_column_indexes=[0, 1, 2, 3, 4, 5], label_column_indexes=[3], sequence_length=7)
#print(train_x.shape) #(973, 7, 6)
#print(train_labels.shape) #(973, 1)
#print(validation_x.shape) #(238, 7, 6)
#print(validation_labels.shape) #(238, 1)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch-supporter-0.0.18.tar.gz (5.0 kB view details)

Uploaded Source

Built Distribution

pytorch_supporter-0.0.18-py3-none-any.whl (9.6 kB view details)

Uploaded Python 3

File details

Details for the file pytorch-supporter-0.0.18.tar.gz.

File metadata

  • Download URL: pytorch-supporter-0.0.18.tar.gz
  • Upload date:
  • Size: 5.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pytorch-supporter-0.0.18.tar.gz
Algorithm Hash digest
SHA256 9cafd25a26ebca47952891bdd59195cad9bcc1692fb5e1b735cabb1c9f107025
MD5 6373688ee82e8f573abe6ab57c09a00d
BLAKE2b-256 2419b3a1f1a854b3acd0a84b9122dd2f116400de48ec3e889e2646cab38abd67

See more details on using hashes here.

File details

Details for the file pytorch_supporter-0.0.18-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_supporter-0.0.18-py3-none-any.whl
Algorithm Hash digest
SHA256 d367576a00a183452f7158a51b235e609289d75a51401890f92278d2489af485
MD5 bbd2d25f00849f982c8c1d0d4ac78344
BLAKE2b-256 d7bbb93d09c8a7910a38a4bb1916bcd62826bb737877bc1b70ed3e944a2df8c4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page