Skip to main content

A Python interface to libVEX and VEX IR

Project description

PyVEX

Latest Release Python Version PyPI Statistics License

PyVEX is Python bindings for the VEX IR.

Project Links

Project repository: https://github.com/angr/pyvex

Documentation: https://api.angr.io/projects/pyvex/en/latest/

Installing PyVEX

PyVEX can be pip-installed:

pip install pyvex

Using PyVEX

import pyvex
import archinfo

# translate an AMD64 basic block (of nops) at 0x400400 into VEX
irsb = pyvex.lift(b"\x90\x90\x90\x90\x90", 0x400400, archinfo.ArchAMD64())

# pretty-print the basic block
irsb.pp()

# this is the IR Expression of the jump target of the unconditional exit at the end of the basic block
print(irsb.next)

# this is the type of the unconditional exit (i.e., a call, ret, syscall, etc)
print(irsb.jumpkind)

# you can also pretty-print it
irsb.next.pp()

# iterate through each statement and print all the statements
for stmt in irsb.statements:
    stmt.pp()

# pretty-print the IR expression representing the data, and the *type* of that IR expression written by every store statement
import pyvex
for stmt in irsb.statements:
    if isinstance(stmt, pyvex.IRStmt.Store):
        print("Data:", end="")
        stmt.data.pp()
        print("")

        print("Type:", end="")
        print(stmt.data.result_type)
        print("")

# pretty-print the condition and jump target of every conditional exit from the basic block
for stmt in irsb.statements:
    if isinstance(stmt, pyvex.IRStmt.Exit):
        print("Condition:", end="")
        stmt.guard.pp()
        print("")

        print("Target:", end="")
        stmt.dst.pp()
        print("")

# these are the types of every temp in the IRSB
print(irsb.tyenv.types)

# here is one way to get the type of temp 0
print(irsb.tyenv.types[0])

Keep in mind that this is a syntactic respresentation of a basic block. That is, it'll tell you what the block means, but you don't have any context to say, for example, what actual data is written by a store instruction.

VEX Intermediate Representation

To deal with widely diverse architectures, it is useful to carry out analyses on an intermediate representation. An IR abstracts away several architecture differences when dealing with different architectures, allowing a single analysis to be run on all of them:

  • Register names. The quantity and names of registers differ between architectures, but modern CPU designs hold to a common theme: each CPU contains several general purpose registers, a register to hold the stack pointer, a set of registers to store condition flags, and so forth. The IR provides a consistent, abstracted interface to registers on different platforms. Specifically, VEX models the registers as a separate memory space, with integer offsets (i.e., AMD64's rax is stored starting at address 16 in this memory space).
  • Memory access. Different architectures access memory in different ways. For example, ARM can access memory in both little-endian and big-endian modes. The IR must abstracts away these differences.
  • Memory segmentation. Some architectures, such as x86, support memory segmentation through the use of special segment registers. The IR understands such memory access mechanisms.
  • Instruction side-effects. Most instructions have side-effects. For example, most operations in Thumb mode on ARM update the condition flags, and stack push/pop instructions update the stack pointer. Tracking these side-effects in an ad hoc manner in the analysis would be crazy, so the IR makes these effects explicit.

There are lots of choices for an IR. We use VEX, since the uplifting of binary code into VEX is quite well supported. VEX is an architecture-agnostic, side-effects-free representation of a number of target machine languages. It abstracts machine code into a representation designed to make program analysis easier. This representation has five main classes of objects:

  • Expressions. IR Expressions represent a calculated or constant value. This includes memory loads, register reads, and results of arithmetic operations.
  • Operations. IR Operations describe a modification of IR Expressions. This includes integer arithmetic, floating-point arithmetic, bit operations, and so forth. An IR Operation applied to IR Expressions yields an IR Expression as a result.
  • Temporary variables. VEX uses temporary variables as internal registers: IR Expressions are stored in temporary variables between use. The content of a temporary variable can be retrieved using an IR Expression. These temporaries are numbered, starting at t0. These temporaries are strongly typed (i.e., "64-bit integer" or "32-bit float").
  • Statements. IR Statements model changes in the state of the target machine, such as the effect of memory stores and register writes. IR Statements use IR Expressions for values they may need. For example, a memory store IR Statement uses an IR Expression for the target address of the write, and another IR Expression for the content.
  • Blocks. An IR Block is a collection of IR Statements, representing an extended basic block (termed "IR Super Block" or "IRSB") in the target architecture. A block can have several exits. For conditional exits from the middle of a basic block, a special Exit IR Statement is used. An IR Expression is used to represent the target of the unconditional exit at the end of the block.

VEX IR is actually quite well documented in the libvex_ir.h file (https://github.com/angr/vex/blob/dev/pub/libvex_ir.h) in the VEX repository. For the lazy, we'll detail some parts of VEX that you'll likely interact with fairly frequently. To begin with, here are some IR Expressions:

IR Expression Evaluated Value VEX Output Example
Constant A constant value. 0x4:I32
Read Temp The value stored in a VEX temporary variable. RdTmp(t10)
Get Register The value stored in a register. GET:I32(16)
Load Memory The value stored at a memory address, with the address specified by another IR Expression. LDle:I32 / LDbe:I64
Operation A result of a specified IR Operation, applied to specified IR Expression arguments. Add32
If-Then-Else If a given IR Expression evaluates to 0, return one IR Expression. Otherwise, return another. ITE
Helper Function VEX uses C helper functions for certain operations, such as computing the conditional flags registers of certain architectures. These functions return IR Expressions. function_name()

These expressions are then, in turn, used in IR Statements. Here are some common ones:

IR Statement Meaning VEX Output Example
Write Temp Set a VEX temporary variable to the value of the given IR Expression. WrTmp(t1) = (IR Expression)
Put Register Update a register with the value of the given IR Expression. PUT(16) = (IR Expression)
Store Memory Update a location in memory, given as an IR Expression, with a value, also given as an IR Expression. STle(0x1000) = (IR Expression)
Exit A conditional exit from a basic block, with the jump target specified by an IR Expression. The condition is specified by an IR Expression. if (condition) goto (Boring) 0x4000A00:I32

An example of an IR translation, on ARM, is produced below. In the example, the subtraction operation is translated into a single IR block comprising 5 IR Statements, each of which contains at least one IR Expression (although, in real life, an IR block would typically consist of more than one instruction). Register names are translated into numerical indices given to the GET Expression and PUT Statement. The astute reader will observe that the actual subtraction is modeled by the first 4 IR Statements of the block, and the incrementing of the program counter to point to the next instruction (which, in this case, is located at 0x59FC8) is modeled by the last statement.

The following ARM instruction:

subs R2, R2, #8

Becomes this VEX IR:

t0 = GET:I32(16)
t1 = 0x8:I32
t3 = Sub32(t0,t1)
PUT(16) = t3
PUT(68) = 0x59FC8:I32

Cool stuff!

Citing PyVEX

If you use PyVEX in an academic work, please cite the paper for which it was developed:

@article{shoshitaishvili2015firmalice,
  title={Firmalice - Automatic Detection of Authentication Bypass Vulnerabilities in Binary Firmware},
  author={Shoshitaishvili, Yan and Wang, Ruoyu and Hauser, Christophe and Kruegel, Christopher and Vigna, Giovanni},
  booktitle={NDSS},
  year={2015}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyvex-9.2.165.tar.gz (3.6 MB view details)

Uploaded Source

Built Distributions

pyvex-9.2.165-py3-none-win_amd64.whl (1.4 MB view details)

Uploaded Python 3Windows x86-64

pyvex-9.2.165-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded Python 3manylinux: glibc 2.17+ x86-64

pyvex-9.2.165-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded Python 3manylinux: glibc 2.17+ ARM64

pyvex-9.2.165-py3-none-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded Python 3macOS 11.0+ ARM64

pyvex-9.2.165-py3-none-macosx_10_12_x86_64.whl (1.8 MB view details)

Uploaded Python 3macOS 10.12+ x86-64

File details

Details for the file pyvex-9.2.165.tar.gz.

File metadata

  • Download URL: pyvex-9.2.165.tar.gz
  • Upload date:
  • Size: 3.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyvex-9.2.165.tar.gz
Algorithm Hash digest
SHA256 907780b6c81724505d599e68e722de3748e4cb655ec76bef8c941f69ddaa1c1e
MD5 6fa55fcd0d41ff3f2f6e94e3155e9d86
BLAKE2b-256 616cd2176b8aed6d6fee369c1a43cf37c5daebe3e7631fed328c582df623fa78

See more details on using hashes here.

Provenance

The following attestation bundles were made for pyvex-9.2.165.tar.gz:

Publisher: angr-release.yml on angr/ci-settings

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file pyvex-9.2.165-py3-none-win_amd64.whl.

File metadata

  • Download URL: pyvex-9.2.165-py3-none-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: Python 3, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for pyvex-9.2.165-py3-none-win_amd64.whl
Algorithm Hash digest
SHA256 0c649be58bd44ed70006c168013968af3b05c2db69b07fd35d0312b262ee1cb2
MD5 ac98019f94377390b6719159e61a6101
BLAKE2b-256 3fc018ebf606b39ff3143f0934ef08e4843fb5036dabe21839a561da5bedf1fe

See more details on using hashes here.

Provenance

The following attestation bundles were made for pyvex-9.2.165-py3-none-win_amd64.whl:

Publisher: angr-release.yml on angr/ci-settings

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file pyvex-9.2.165-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyvex-9.2.165-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 95a6fd53d3e3f6629034c514c6248845f7913ac66cd43b385bef8837b6c9940f
MD5 44a9475f28c673bbf7e859ec8a89a95c
BLAKE2b-256 224e323989e82d316e123504e9aa0e2183995b4b883f355d94d56f02823edb29

See more details on using hashes here.

Provenance

The following attestation bundles were made for pyvex-9.2.165-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl:

Publisher: angr-release.yml on angr/ci-settings

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file pyvex-9.2.165-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyvex-9.2.165-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e525c92b40bf0a35af8027bce06678e10e5f9528cc29a78192c973a22876132a
MD5 4a50360b595a1ae9b29a1a5555291c06
BLAKE2b-256 2ad8a2374d122bdf2449d7658b9cabab0ef633241860d0a766a6164b71e12e68

See more details on using hashes here.

Provenance

The following attestation bundles were made for pyvex-9.2.165-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl:

Publisher: angr-release.yml on angr/ci-settings

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file pyvex-9.2.165-py3-none-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyvex-9.2.165-py3-none-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 afec770c57195d7c3f0814bf374a66b0b95201d3d90ac4f08397fa1d87f3f81b
MD5 c9ceaacf5901e30ecd771e0cce85a236
BLAKE2b-256 bccc990dc4a1323f58c71aa386987d4f27db45b41c274883da8fda873baea081

See more details on using hashes here.

Provenance

The following attestation bundles were made for pyvex-9.2.165-py3-none-macosx_11_0_arm64.whl:

Publisher: angr-release.yml on angr/ci-settings

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file pyvex-9.2.165-py3-none-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for pyvex-9.2.165-py3-none-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 928fd8056efd29c1bef65089f0e204035efdc39b9845f175cb693d66b18ecf5a
MD5 dbea73c243d2a7ec6437ea3e03f80a0c
BLAKE2b-256 8feb71318562ac7791972f71fad79461259a89fefc28c4a5bf401a467094ddd3

See more details on using hashes here.

Provenance

The following attestation bundles were made for pyvex-9.2.165-py3-none-macosx_10_12_x86_64.whl:

Publisher: angr-release.yml on angr/ci-settings

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page