Skip to main content

Explaining Machine Learning Classifiers in Python

Project description

pyxai

PyXAI - Python eXplainable AI

What is PyXAI ?

PyXAI (Python eXplainable AI) is a Python library (version 3.6 or later) allowing to bring formal explanations suited to (regression or classification) tree-based ML models (Decision Trees, Random Forests, Boosted Trees, ...). PyXAI generates explanations that are post-hoc and local. In contrast to many popular approaches to XAI (SHAP, LIME, ...), PyXAI generates explanations that are also correct. Being correct (aka sound or faithful) indicates that the explanations that are provided actually reflect the exact behaviour of the model by guaranteeing certain properties about the explanations generated. They can be of several types:

  • Abductive explanations for an instance $X$ are intended to explain why $X$ has been classified in the way it has been classified by the ML model (thus, addressing the “Why?” question). In the regression case, abductive explanations for $X$ are intended to explain why the regression value of $X$ belongs to a given interval.
  • Contrastive explanations for $X$ are intended to explain why $X$ has not been classified by the ML model as the user expected it (thus, addressing the “Why not?” question).

PyXAI also includes algorithms for correcting tree-based models when their predictions conflict with pieces of user knowledge. This more tricky facet of XAI is seldom offered by existing XAI systems. When some domain knowledge is available and a prediction (or an explanation) contradicts it, the model must be corrected. Rectification is a principled approach for such a correction operation.

New features in version 1.1:

  • Rectification for DT (Decision Tree) and RF (Random Forest) models dedicated to binary classification.
  • Visualization displayed in a notebook or on screen, and now also for time series problems.
  • Enhanced compatibility with Mac OS and Windows

New features in version 1.0:

  • Regression for Boosted Trees with XGBoost or LightGBM
  • Adding Theories (knowledge about the dataset)
  • Easier model import (automatic detection of model types)
  • PyXAI's Graphical User Interface (GUI): displaying, loading and saving explanations.
  • Supports multiple image formats for imaging datasets
  • Supports data pre-processing (tool for preparing and cleansing a dataset)
  • Unit Tests with the unittest module
pyxai
User interaction with PyXAI.
pyxai
PyXAI's Graphical User Interface (GUI) for visualizing explanations.
pyxai
Visualization in a notebook of an explanation for an instance from a time series problem.

What is the difference between PyXAI and other methods ?

The most popular approaches (SHAP, LIME, ...) to XAI are model-agnostic, but they do not offer any guarantees of rigor. A number of works by Marques-Silva and Huang, Ignatiev have highlighted several misconceptions about such approaches to XAI. Correctness is paramount when dealing with high-risk or sensitive applications, which is the type of applications that are targeted by PyXAI. When the correctness property is not satisfied, one can find ”counterexamples” for the explanations that are generated, i.e., pairs of instances sharing an explanation but leading to distinct predictions. Contrastingly, PyXAI algorithms rely on logic-based, model-precise approaches for computing explanations. Although formal explainability has a number of drawbacks, particularly in terms of the computational complexity of logical reasoning needed to derive explanations, steady progress has been made since its inception.

Which models can be explained with PyXAI ?

Models are the resulting objects of an experimental ML protocol through a chosen cross-validation method (for example, the result of a training phase on a classifier). Importantly, in PyXAI, there is a complete separation between the learning phase and the explaining phase: you produce/load/save models, and you find explanations for some instances given such models. Currently, with PyXAI, you can use methods to find explanations suited to different ML models for classification or regression tasks:

In addition to finding explanations, PyXAI also provides methods that perform operations (production, saving, loading) on models and instances. Currently, these methods are available for three ML libraries:

  • Scikit-learn: a software machine learning library
  • XGBoost: an optimized distributed gradient boosting library
  • LightGBM: a gradient boosting framework that uses tree based learning algorithms

It is possible to also leverage PyXAI to find explanations suited to models learned using other libraries.

What does this website offer ?

In this website, you can find all what you need to know about PyXAI, with more than 10 Jupyter Notebooks, including:

How to use PyXAI ?

Here is an example (it comes from the Quick Start page):

PyXAI in action

from pyxai import Learning, Explainer

learner = Learning.Scikitlearn("tests/iris.csv", learner_type=Learning.CLASSIFICATION)
model = learner.evaluate(method=Learning.HOLD_OUT, output=Learning.DT)
instance, prediction = learner.get_instances(model, n=1, correct=True, predictions=[0])

explainer = Explainer.initialize(model, instance)
print("instance:", instance)
print("binary representation:", explainer.binary_representation)

sufficient_reason = explainer.sufficient_reason(n=1)
print("sufficient_reason:", sufficient_reason)
print("to_features:", explainer.to_features(sufficient_reason))

instance, prediction = learner.get_instances(model, n=1, correct=False)
explainer.set_instance(instance)
contrastive_reason = explainer.contrastive_reason()
print("contrastive reason", contrastive_reason)
print("to_features:", explainer.to_features(contrastive_reason, contrastive=True))

explainer.visualisation.screen(instance, contrastive_reason, contrastive=True)
pyxai

As illustrated by this example, with a few lines of code, PyXAI allows you to train a model, extract instances, and get explanations about the classifications made.



Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

pyxai-1.1.1-cp314-cp314t-musllinux_1_2_x86_64.whl (13.1 MB view details)

Uploaded CPython 3.14tmusllinux: musl 1.2+ x86-64

pyxai-1.1.1-cp314-cp314t-musllinux_1_2_aarch64.whl (13.1 MB view details)

Uploaded CPython 3.14tmusllinux: musl 1.2+ ARM64

pyxai-1.1.1-cp314-cp314t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pyxai-1.1.1-cp314-cp314t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (12.1 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pyxai-1.1.1-cp314-cp314t-macosx_12_0_arm64.whl (11.2 MB view details)

Uploaded CPython 3.14tmacOS 12.0+ ARM64

pyxai-1.1.1-cp314-cp314-musllinux_1_2_x86_64.whl (13.1 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ x86-64

pyxai-1.1.1-cp314-cp314-musllinux_1_2_aarch64.whl (13.0 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ ARM64

pyxai-1.1.1-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pyxai-1.1.1-cp314-cp314-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (12.1 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pyxai-1.1.1-cp314-cp314-macosx_12_0_arm64.whl (11.2 MB view details)

Uploaded CPython 3.14macOS 12.0+ ARM64

pyxai-1.1.1-cp313-cp313-musllinux_1_2_x86_64.whl (13.1 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

pyxai-1.1.1-cp313-cp313-musllinux_1_2_aarch64.whl (13.0 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARM64

pyxai-1.1.1-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pyxai-1.1.1-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (12.1 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pyxai-1.1.1-cp313-cp313-macosx_12_0_arm64.whl (11.2 MB view details)

Uploaded CPython 3.13macOS 12.0+ ARM64

pyxai-1.1.1-cp312-cp312-musllinux_1_2_x86_64.whl (13.1 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

pyxai-1.1.1-cp312-cp312-musllinux_1_2_aarch64.whl (13.0 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARM64

pyxai-1.1.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pyxai-1.1.1-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (12.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pyxai-1.1.1-cp312-cp312-macosx_12_0_arm64.whl (11.2 MB view details)

Uploaded CPython 3.12macOS 12.0+ ARM64

pyxai-1.1.1-cp311-cp311-musllinux_1_2_x86_64.whl (13.1 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

pyxai-1.1.1-cp311-cp311-musllinux_1_2_aarch64.whl (13.0 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARM64

pyxai-1.1.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pyxai-1.1.1-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (12.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pyxai-1.1.1-cp311-cp311-macosx_12_0_arm64.whl (11.2 MB view details)

Uploaded CPython 3.11macOS 12.0+ ARM64

pyxai-1.1.1-cp310-cp310-musllinux_1_2_x86_64.whl (13.1 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

pyxai-1.1.1-cp310-cp310-musllinux_1_2_aarch64.whl (13.0 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ ARM64

pyxai-1.1.1-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pyxai-1.1.1-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (12.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pyxai-1.1.1-cp310-cp310-macosx_12_0_arm64.whl (11.2 MB view details)

Uploaded CPython 3.10macOS 12.0+ ARM64

pyxai-1.1.1-cp39-cp39-musllinux_1_2_x86_64.whl (13.1 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

pyxai-1.1.1-cp39-cp39-musllinux_1_2_aarch64.whl (13.0 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ ARM64

pyxai-1.1.1-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pyxai-1.1.1-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (12.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pyxai-1.1.1-cp39-cp39-macosx_12_0_arm64.whl (11.2 MB view details)

Uploaded CPython 3.9macOS 12.0+ ARM64

pyxai-1.1.1-cp38-cp38-musllinux_1_2_x86_64.whl (13.1 MB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ x86-64

pyxai-1.1.1-cp38-cp38-musllinux_1_2_aarch64.whl (13.0 MB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ ARM64

pyxai-1.1.1-cp38-cp38-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pyxai-1.1.1-cp38-cp38-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (12.1 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pyxai-1.1.1-cp38-cp38-macosx_12_0_arm64.whl (11.2 MB view details)

Uploaded CPython 3.8macOS 12.0+ ARM64

File details

Details for the file pyxai-1.1.1-cp314-cp314t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp314-cp314t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4c12629296d42da9526259c903bd7355efcad6c639ff91aeb3a44e8b4654a4a0
MD5 b3539392f592ba6620860eec7f5f901b
BLAKE2b-256 8b41f2f156164807d5f0923c7ca51f30a98bfea2b4b7cbed51f5660effa49935

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp314-cp314t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp314-cp314t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 1caab1dbb86b7d3d8f228d72ff00e8b3b8cc61c162b52b9d654e1f2988f69dcf
MD5 276fdbba3969f9fcd243c32016c00e3a
BLAKE2b-256 c223710162e0cf177b401269479cf5ebce21ea01a95fbf6149ca335469c6a459

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp314-cp314t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp314-cp314t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0d5df9c61791f33233340fc37de6c6527adda271e0f9405f805f19481af981f7
MD5 8c0c71d1d192d9bb7dc3296c24c2ef94
BLAKE2b-256 b42ca2ccff9b27794234f3c7c77b73739874d41e99ca962c620f7bac57179a3a

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp314-cp314t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp314-cp314t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 a8e652caf92c037660f7db2166a07174f051518f8fe86bb42e7f953d4b28dc0a
MD5 d88e627bf8a82d3c5d5c75d7d1e9c81b
BLAKE2b-256 881c67c65379986ab26d7c95ae0794b862e24da3dcb55456cfc6f70ab18b8520

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp314-cp314t-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp314-cp314t-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 b005cfa0d5e2c226065c91a38207fca19e2bd0622a5e5075a5b909fc3cf5857e
MD5 54b95d0a50cc04f74dc9456435694ddb
BLAKE2b-256 0bbd74254cdb0e29ae4005410731d9892c4d4f21ff3a6399e85a6d91a2c50d5d

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp314-cp314-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp314-cp314-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 09cb139a816ded8c60cb0e4e70398aa6620835a9bd7e4db06a5282a0c58e34ba
MD5 47c9d905d4fe48b8f6e651594297c98d
BLAKE2b-256 8479bbbbc842b0d8b798f030e63d4e4ab0592ceeb858e5a02bfee765df9497ab

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp314-cp314-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp314-cp314-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 2115944fa0746caf767f063942b58f5563808017c70a953204da9256e232512b
MD5 c59b7e3b2778605e1cdb285032f3b21f
BLAKE2b-256 b5494547454e85ae83763924b06a87bf68c80b8c33db13fb7fc31edb8a590b81

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 1b30b29c781f281dec46eb8bbea7e1cb83fac2832df91d95a4a0d2d94a797c0f
MD5 6ea482aba95ba91b40607b9c97b531b3
BLAKE2b-256 94bea8bc9bf2a9364873c91b9e8a8ade38be33613d06a152bd80227012829d19

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp314-cp314-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp314-cp314-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 e915c94459b23d583b3debf1baa94a3836a6545c5a767ee7a211eeff4fb3a76a
MD5 20ea2bc474c847fa244ab09f33e30d88
BLAKE2b-256 4457059ca6026866082ee3e34091f61c5e5c1588bf508e6fc066fc8a9b2a50cf

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp314-cp314-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp314-cp314-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 4d649e6e3161e456cf667ea084d0ac63a2adb7e75cb69fbc2abe39cc62c4b7c6
MD5 c7c01019f11f9aeb826a3a79851fb157
BLAKE2b-256 1209d97733f8d9af0ee9e8bcaeacae86d5c9ae1c83e6568195ebb59d9585d464

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 0abd9444b485c99c1612e716aecb36997f8f6b4b3e0ce318d2f539dc94f623ab
MD5 1c1ca29a4abdbd19ad6f4938773f45a6
BLAKE2b-256 f0478bd3c8a1cfcd4aea272d335ff6bc4ad199d88d47fe4ca65343101ce1bce4

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 ec2ca35c4e9e794e68e90550ca53abbb1ca574445aeb00fd3adc3fd828a0e10b
MD5 82027ea5a3de6ea0feb232be15cfddea
BLAKE2b-256 67a8d62cf6dd6c60492d82365c8b55a7d5e2cb65c672a679d9d85404ac0f2eb5

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4fad883049a5482fe17980ed5302d2a3706fed1511d6f7005b5832f12fbbb316
MD5 86e4af54b44ddff3c8b2673a20522c0e
BLAKE2b-256 66092183b49ae1e3baeda3a1502639041a8016b5c6027a33458bb3783f21a161

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 97640546ec1bd49ea34d738650e80f72ae3bd541a8f429a2883826c6326e3fcf
MD5 888ef516847198a8589927a28fc7fc15
BLAKE2b-256 759db6f8b7173d21ac573dc558d852234d122372f57e1cdcdaed0f77b9cd1fad

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp313-cp313-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp313-cp313-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 00d974a19fab7657a377587a54fbb6a9c9a10d99be5f7241517d8109292882a7
MD5 d3821647492c8ac679ee946e6bcd77f6
BLAKE2b-256 30da48ddcb6e3190e576bc2e139dec4c1ea116fa2921e3845f65eb17e3212272

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a77bf03d8ebdf483eec51f2d87be5fad5cd20ba66871ef98e142cc82a0115632
MD5 f055a3ed0b758d760aa0520372864e58
BLAKE2b-256 5f27477cd79fc875ed21c0ec2c07c27b3725646f2e564b91b7d6633bba3b05e4

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 df3dd0e94710c8fbf71348f3e24e7669da324f2dca928eb6867618bb04d63cc1
MD5 7310350674cee3a0aaa24f17d99416ac
BLAKE2b-256 40a3c1b9d6139a53b1d7822340f5618249679a942e9999aa51c15ffd8d46a8ff

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4f4f7516affc7ff5621cf6afc104d9a384aea79a7fa2760a4d7bb59b14dcd80b
MD5 8d83370419fcad38a8cdfa4d5c3d87a8
BLAKE2b-256 93a445151cf9d2ed1838a20185befb4a83f07ba8f10b8e42474efb589e6b8ecc

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 79ae7aa53eaee427f17aac0feea0947ac5a1cfa02464e971923d62ace110faa2
MD5 af48bc14be602f300f05d9e2123e6845
BLAKE2b-256 10da650c59ad34f79f127a6734eacce508f2e62212d29c5e044226bdb42713af

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 535b268841bbb94f2f88a53fb37726b4486524f7a601fc77915c8da99434621d
MD5 40cfa7823f50a91c33d0bc89912187a4
BLAKE2b-256 02cf0631e1e388a4d7f6507893de190f151a39c9480cee042b47c9ba30d72ff4

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5549ff2bbde2717ccddd92f992a2b261c4dcdd62563c4d4628b29675a0ecaabd
MD5 51a15d7cf0322be741f4f263aaafac20
BLAKE2b-256 7b0fc86383b19e529c5f8367e5c62bfa33283cf174599779c1472e802543fba1

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 a3189aed3d27a624a2c5daf7d994fe028e62024339beac91afe0000214cc0c0c
MD5 f2890ee2255fde052823925a51daaa0d
BLAKE2b-256 fd1916abe626d4c62bf07f86ab6e228cc87b075eeb4c91c665b6ce582fc6ae88

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 828535f252855aaa672c544b146c6c2cccc90c2b2ae13ed1d5ef96d8f366e8ff
MD5 dd76e85092e258e724fda043cb18ca6c
BLAKE2b-256 d73bfe805a7eb5fb57030a2a5b7d5fb3766f9b647e6caa9be9274875c6495c24

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 16d35065d80598cbc2341a67581d396c865114773e3fc69ee2b7108f1da3e0fc
MD5 f66fa9e6751f4a93fbbc459e7ee459b4
BLAKE2b-256 72efda3440b82eca8c504fe97b78633d45c96200ba9d64d8b1a02716f6b7abef

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 7720a02071f288c95fcacb3f9388507e4147eec8b9ca858238254ed9a3b9b354
MD5 bd3098e0e462615efb55d45cf0f0a6ae
BLAKE2b-256 5b24f491f94dee0de73156a8b6f91bbec7e054baf323b2779ee527cd93fb1839

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 eeca5aad280cb7b94bc61785a1db09daad4726abcea087350dbd2e123a2d3424
MD5 d3674dc6ad44cff8d9a7dd75ad36960a
BLAKE2b-256 ea68a16688982ee41476d7eea24f3cb38e742d97c8ab48e855f9f944a9c2147d

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 cc41a34f3fab0b43733e7eb9d6621aa9fcaa1baaa74ad7f6e0af7ea3d70bd29d
MD5 8645d26b4f0456420b531b98bf4783b0
BLAKE2b-256 d0669d7a268c751442044266a6a84b9cd440c3b13f4376b4d1bfda6a75e99906

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f5baf03a24fce4222a69e8dad2cf8bb78f94b5fdb22a4112bd72aef4d4bec571
MD5 50903c3c52968ff9710a980f3df4f449
BLAKE2b-256 d0b971a326b8997e5b7cfbb3f9e813accb54af5f832a8f5a7780442b0f4c9a2b

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 426a73bfd1eece65d2ab55585093ff6b92f6b7da0cc0a69ff91ba47a13cb0655
MD5 227f292c31da67a7111ffeeef7a14cbe
BLAKE2b-256 1eacc44333373fe8d67f64611b0c19a9e5f9a1e403695c6df61055c30cd321e1

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 3c79a310d7d1e38ff0a25dad41fa806c37ceea0392f131ae31571194f0f0d4d0
MD5 e72dffbe0f9acbcf98a990cd81f7850b
BLAKE2b-256 855c0e5951dbb8cfa66318ce8974879f1b1d54b50cbc2c43a9dc28073209dd6a

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 64e801217b9663640d1544193e616c22075b4f3b45788217e70b16caca4226f7
MD5 9b49344ad645dff773caf65364210413
BLAKE2b-256 403347ea66d663de465b9657956f8e9f300d77aeb5ed6593e08e4ee9dcfe2976

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 681ad0b3f45ef66b27aec83a25ec0611bafba9eda6355eadb324838e68753871
MD5 5d26f5555882311da59ae7a647d3a3d2
BLAKE2b-256 5940e23ca6f9b17b1d02e172bbdeea6484b6024999a021bc1f616172835b52d8

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 1590d1aa5ab74108b862aa965fd9311eaf546e82ac92bdfa88dc16288310dd9a
MD5 b5059c27f04242ef29656ac7564cdbd5
BLAKE2b-256 0537a03f8368a402c7d882e50dd7188835262eb65274ef3c60c5c4e86474d34d

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 682547d654c8e9dae82f73b36e7a1e767e06ee80fc9ca524860d09769ab96262
MD5 45785e50625d24b028bc1183a8a02e53
BLAKE2b-256 9e8831add6d1004677043017f9b9907771efb7238cf5fea8dff5f8edadae6d77

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

  • Download URL: pyxai-1.1.1-cp39-cp39-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 11.2 MB
  • Tags: CPython 3.9, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.7

File hashes

Hashes for pyxai-1.1.1-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 ee5a878e5f040b2f21b021f01e800b29ba7e210bfb17022b22bdca3ea6327299
MD5 01a70e5442057dffc67eaf6187847c93
BLAKE2b-256 cc7913a5352ec77ee017c9a482ca379d6184e0019bc60a222f44f77e464b5b95

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e638d33987677e8524b5e6cc64d8bb178e2ae491084d78af45904184abe6f9ef
MD5 f4bbb943e70d55616fb3c0dca9bd52c9
BLAKE2b-256 2af0f9dd33b40e8c49ad7b1053ade71c7385ff4ac841802d8ead02d77c57ca32

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 64986fb51776e46f1be25fd6b5c20f86b23990dfef3af3c516592dedf372e325
MD5 c9864171b56bf67a27b365c5640a3bef
BLAKE2b-256 dc86f108d784d30ebb8fb808d87431936bce60e93b2b2d5b2691e0a68031da3d

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp38-cp38-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp38-cp38-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4b812dbf4b617d05b0a4555df07f5c3699751107dfa45ba5766ccff031d07c0a
MD5 e88e48d1f7000e409697c159954c4e5a
BLAKE2b-256 56db45f17166c83b6d5a85b7e1130878d607c92d4f34d451590bd225af5700e0

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp38-cp38-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyxai-1.1.1-cp38-cp38-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 4d0eee7aadc55ce77587aee6adee4b6d8576d14dac38c5da3abca1239c25bea0
MD5 75ee12dd2b5e307df911fa7fc627d546
BLAKE2b-256 455361927d608cb89b9f4fac2998f01ca063293d2879b71cbde21bd9819f99f0

See more details on using hashes here.

File details

Details for the file pyxai-1.1.1-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

  • Download URL: pyxai-1.1.1-cp38-cp38-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 11.2 MB
  • Tags: CPython 3.8, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.7

File hashes

Hashes for pyxai-1.1.1-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 f63fa634d8dff3c05aa964cc02eb085c8d1eebfb66acbc2bcce0268e120343eb
MD5 4f0d44be2266c1fa28a349155db59397
BLAKE2b-256 6a10e19a0cfc666bd27dc71a2f8fafea30b83ad6abbee9427f626588cdc79497

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page