Skip to main content

QIM tools and user interfaces for volumetric imaging

Project description

Quantitative Imaging in 3D

qim3d logo

PyPI version Downloads

The qim3d (kɪm θriː diː) library is designed to make it easier to work with 3D imaging data in Python. It offers a range of features, including data loading and manipulation, image processing and filtering, visualization of 3D data, and analysis of imaging results.

You can easily load and process 3D image data from various file formats, apply filters and transformations to the data, visualize the results using interactive plots and 3D rendering, and perform quantitative analysis on the images.

Documentation available at https://docs.qim.dk/qim3d/

For more information on the QIM center visit https://qim.dk/

Installation

We recommend using a conda environment:

conda create -n qim3d python=3.11

After the environment is created, activate it by running:

conda activate qim3d

And then installation is easy using pip:

pip install qim3d

Remember that the environment needs to be activated each time you use qim3d!

For more detailed instructions and troubleshooting, please refer to the documentation.

Examples

Interactive volume slicer

import qim3d

vol = qim3d.examples.bone_128x128x128
qim3d.viz.slicer(vol)

viz slicer

Line profile

import qim3d

vol = qim3d.examples.bone_128x128x128
qim3d.viz.line_profile(vol)

line profile

Threshold exploration

import qim3d

# Load a sample volume
vol = qim3d.examples.bone_128x128x128

# Visualize interactive thresholding
qim3d.viz.threshold(vol)

threshold exploration

Synthetic data generation

import qim3d

# Generate synthetic collection of volumes
num_volumes = 15
volume_collection, labels = qim3d.generate.volume_collection(num_volumes = num_volumes)

# Visualize the collection
qim3d.viz.volumetric(volume_collection)

synthetic collection

Structure tensor analysis

import qim3d

vol = qim3d.examples.NT_128x128x128
val, vec = qim3d.processing.structure_tensor(vol, visualize = True, axis = 2)

structure tensor

Support

The development of the qim3d is supported by the Infrastructure for Quantitative AI-based Tomography QUAITOM which is supported by a Novo Nordisk Foundation Data Science Programme grant (Grant number NNF21OC0069766).

NNF

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qim3d-1.4.0.tar.gz (12.3 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

qim3d-1.4.0-py3-none-any.whl (12.4 MB view details)

Uploaded Python 3

File details

Details for the file qim3d-1.4.0.tar.gz.

File metadata

  • Download URL: qim3d-1.4.0.tar.gz
  • Upload date:
  • Size: 12.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.11

File hashes

Hashes for qim3d-1.4.0.tar.gz
Algorithm Hash digest
SHA256 ef410348f55c02c81733042d919646ebcd0dd754c87c2d9d579437e684395783
MD5 b72b757f071791c115f8fbc87d71e4d5
BLAKE2b-256 68f3936e102bbec0da132346a8ecf79e0e7eed959725f4c8fcf925d6d192dd21

See more details on using hashes here.

File details

Details for the file qim3d-1.4.0-py3-none-any.whl.

File metadata

  • Download URL: qim3d-1.4.0-py3-none-any.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.11

File hashes

Hashes for qim3d-1.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3c9094faad2e105e6db01eeaf25a30689c53688f4cec0872733a8f297b5403bb
MD5 b0b5834f5758b22f395ce472ba76896d
BLAKE2b-256 67d03dc5dd04bdc09fbbd7ec0745b4ac3b4ebafc60129cc6e79ff5ff95e252db

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page