Skip to main content

Robust QR Detector based on YOLOv7

Project description

QRDet

QRDet is a robust QR Detector based on YOLOv7.

QRDet will detect QR codes even in difficult positions or tricky images. If you are looking for a complete QR Detection + Decoding pipeline, take a look at QReader.

Installation

To install QRDet, simply run:

pip install qrdet

Usage

There is only one function you'll need to call to use QRDet, detect:

from qrdet import QRDetector
import cv2

detector = QRDetector()
image = cv2.imread(filename='resources/qreader_test_image.jpeg')
detections = detector.detect(image=image, is_bgr=True)

# Draw the detections
for (x1, y1, x2, y2), confidence in detections:
    cv2.rectangle(image, (x1, y1), (x2, y2), color=(0, 255, 0), thickness=2)
    cv2.putText(image, f'{confidence:.2f}', (x1, y1 - 10), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1,
                color=(0, 255, 0), thickness=2)
# Save the results
cv2.imwrite(filename='resources/qreader_test_image_detections.jpeg', img=image)
detections_output

API Reference

QReader.detect(image, return_confidences = True, as_float = False, is_bgr = False)

  • image: np.ndarray. NumPy Array containing the image to decode. The image is expected to be in uint8 format [HxWxC], RGB or BGR depending on the is_bgr parameter.

  • return_confidences: bool. If True, the output will be in the format (((x1, y1, x2, y2), confidence), ...). Otherwise, it will be in the format ((x1, y1, x2, y2), ...). Default: True.

  • return_confidences: bool. If True, the returned coordinates will be returned as float, with the complete precision outputted from the detection model. Otherwise, they will be rounded to the closest integer. Default: False.

  • is_bgr: bool. If True the image is expected to be in BGR. Otherwise, it will be expected to be RGB. Default: False

  • Returns: tuple[tuple[tuple[int, int, int, int], float], ...] | tuple[tuple[int, int, int, int]]: A tuple with the coordinates of all detected QR codes. If return_confidences is True, the output will look like: (((x1, y1, x2, y2), confidence), ...). If return_confidences is False it will look like: ((x1, y1, x2, y2), ...).

Acknowledgements

This library is based on the following projects:

  • YoloV7 model for Object Detection.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qrdet-1.7.tar.gz (5.5 kB view details)

Uploaded Source

File details

Details for the file qrdet-1.7.tar.gz.

File metadata

  • Download URL: qrdet-1.7.tar.gz
  • Upload date:
  • Size: 5.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.2

File hashes

Hashes for qrdet-1.7.tar.gz
Algorithm Hash digest
SHA256 12c60c127b3c850476ccafa4a567c1546c7f923e1e91b06dd99dd8c919100db5
MD5 4dd27df94b8dff80bf037d2b9bc81973
BLAKE2b-256 4a3b691cebaca37ef46cdf437e5178644cfc18309e756e3a02f96e986d83844c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page