A package for quantum parameter estimation.
Project description
QuanEstimation
QuanEstimation is a Python-Julia-based open-source toolkit for quantum parameter estimation. It can be used to perform general evaluations of many metrological tools and scheme designs in quantum parameter estimation.
Documentation
The documentation of QuanEstimation can be found here. This project uses the Google Python Style Guide for docstrings.
Installation
- Install QuanEstimation via PyPI:
pip install quanestimation
- Download the package and install it in the terminal:
git clone https://github.com/QuanEstimation/QuanEstimation.git
cd QuanEstimation
pip install .
Code Style
This project follows the PEP 8 Python code style guide. It is recommended to use tools such as black and flake8 for code formatting and linting.
Citation
-
If you use QuanEstimation in your research, please cite:
[1] M. Zhang, H.-M. Yu, H. Yuan, X. Wang, R. Demkowicz-Dobrzański, and J. Liu,
QuanEstimation: An open-source toolkit for quantum parameter estimation,
Phys. Rev. Res. 4, 043057 (2022).[2] H.-M. Yu and J. Liu, QuanEstimation.jl: An open-source Julia framework for quantum parameter estimation,
Fundam. Res. (2025). -
Development of the GRAPE algorithm:
-
auto-GRAPE:
M. Zhang, H.-M. Yu, H. Yuan, X. Wang, R. Demkowicz-Dobrzański, and J. Liu,
QuanEstimation: An open-source toolkit for quantum parameter estimation,
Phys. Rev. Res. 4, 043057 (2022). -
GRAPE for single-parameter estimation:
J. Liu and H. Yuan, Quantum parameter estimation with optimal control,
Phys. Rev. A 96, 012117 (2017). -
GRAPE for multiparameter estimation:
J. Liu and H. Yuan, Control-enhanced multiparameter quantum estimation,
Phys. Rev. A 96, 042114 (2017).
-
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file quanestimation-0.2.8.tar.gz.
File metadata
- Download URL: quanestimation-0.2.8.tar.gz
- Upload date:
- Size: 6.0 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.3
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
3872da3c5d0aa4ebea717c537cd6836a0c58d0c468a3ccad8598b97af8db216c
|
|
| MD5 |
02eefc81816565f33b657f533afe3de5
|
|
| BLAKE2b-256 |
e9dc10f44e68fb84b401672f5548df295c21871f10c0b2549bb598e307fb6ecb
|
File details
Details for the file quanestimation-0.2.8-py2.py3-none-any.whl.
File metadata
- Download URL: quanestimation-0.2.8-py2.py3-none-any.whl
- Upload date:
- Size: 464.2 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.3
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
6837f959a280b7e2a115317aefb9b11e3b4730545b8d408a297b9ac042237daf
|
|
| MD5 |
fee49273e2c8ef8e33303e5ec75dcd6d
|
|
| BLAKE2b-256 |
8f1781acad1093a0e6f6498af93ebec58fa5d94322a3d40e8b6bc433f3013c17
|