Skip to main content

A package for quantum parameter estimation.

Project description

QuanEstimation

GitHub release (latest by date) License: BSD-3-Clause CI codecov Downloads Tutorial

QuanEstimation is a Python-Julia-based open-source toolkit for quantum parameter estimation. It can be used to perform general evaluations of many metrological tools and scheme designs in quantum parameter estimation.

Documentation

Docs Stable

The documentation of QuanEstimation can be found here. This project uses the Google Python Style Guide for docstrings.

Installation

PyPI

  1. Install QuanEstimation via PyPI:
pip install quanestimation
  1. Download the package and install it in the terminal:
git clone https://github.com/QuanEstimation/QuanEstimation.git
cd QuanEstimation
pip install .

Code Style

This project follows the PEP 8 Python code style guide. It is recommended to use tools such as black and flake8 for code formatting and linting.

Citation

  • If you use QuanEstimation in your research, please cite:

    [1] M. Zhang, H.-M. Yu, H. Yuan, X. Wang, R. Demkowicz-Dobrzański, and J. Liu,
    QuanEstimation: An open-source toolkit for quantum parameter estimation,
    Phys. Rev. Res. 4, 043057 (2022).

    [2] H.-M. Yu and J. Liu, QuanEstimation.jl: An open-source Julia framework for quantum parameter estimation,
    Fundam. Res. (2025).

  • Development of the GRAPE algorithm:

    • auto-GRAPE:

      M. Zhang, H.-M. Yu, H. Yuan, X. Wang, R. Demkowicz-Dobrzański, and J. Liu,
      QuanEstimation: An open-source toolkit for quantum parameter estimation,
      Phys. Rev. Res. 4, 043057 (2022).

    • GRAPE for single-parameter estimation:

      J. Liu and H. Yuan, Quantum parameter estimation with optimal control,
      Phys. Rev. A 96, 012117 (2017).

    • GRAPE for multiparameter estimation:

      J. Liu and H. Yuan, Control-enhanced multiparameter quantum estimation,
      Phys. Rev. A 96, 042114 (2017).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quanestimation-0.2.8.tar.gz (6.0 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

quanestimation-0.2.8-py2.py3-none-any.whl (464.2 kB view details)

Uploaded Python 2Python 3

File details

Details for the file quanestimation-0.2.8.tar.gz.

File metadata

  • Download URL: quanestimation-0.2.8.tar.gz
  • Upload date:
  • Size: 6.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for quanestimation-0.2.8.tar.gz
Algorithm Hash digest
SHA256 3872da3c5d0aa4ebea717c537cd6836a0c58d0c468a3ccad8598b97af8db216c
MD5 02eefc81816565f33b657f533afe3de5
BLAKE2b-256 e9dc10f44e68fb84b401672f5548df295c21871f10c0b2549bb598e307fb6ecb

See more details on using hashes here.

File details

Details for the file quanestimation-0.2.8-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for quanestimation-0.2.8-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 6837f959a280b7e2a115317aefb9b11e3b4730545b8d408a297b9ac042237daf
MD5 fee49273e2c8ef8e33303e5ec75dcd6d
BLAKE2b-256 8f1781acad1093a0e6f6498af93ebec58fa5d94322a3d40e8b6bc433f3013c17

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page