Skip to main content

Multiple dispatch in JAX via custom interpreters.

Project description

Quax

JAX + multiple dispatch + custom array-ish objects

For example, this can be mean overloading matrix multiplication to exploit sparsity or structure, or automatically rewriting a LoRA's matmul (W + AB)v into the more-efficient Wv + ABv.

Applications include:

  • LoRA weight matrices
  • symbolic zeros
  • arrays with named dimensions
  • structured (e.g. tridiagonal) matrices
  • sparse arrays
  • quantised arrays
  • arrays with physical units attached
  • etc! (See the built-in quax.examples library for most of the above!)

This works via a custom JAX transform. Take an existing JAX program, wrap it in a quax.quaxify, and then pass in the custom array-ish objects. This means it will work even with existing programs, that were not written to accept such array-ish objects!

(Just like how jax.vmap takes a program, but reinterprets each operation as its batched version, so to will quax.quaxify take a program and reinterpret each operation according to what array-ish types are passed.)

Installation

pip install quax

Documentation

Available at https://docs.kidger.site/quax.

Example: LoRA

This example demonstrates everything you need to use the built-in quax.examples.lora library.

import equinox as eqx
import jax.random as jr
import quax
import quax.examples.lora as lora

#
# Start off with any JAX program: here, the forward pass through a linear layer.
#

key1, key2, key3 = jr.split(jr.PRNGKey(0), 3)
linear = eqx.nn.Linear(10, 12, key=key1)
vector = jr.normal(key2, (10,))

def run(model, x):
  return model(x)

run(linear, vector)  # can call this as normal

#
# Now let's Lora-ify it.
#

# Step 1: make the weight be a LoraArray.
lora_weight = lora.LoraArray(linear.weight, rank=2, key=key3)
lora_linear = eqx.tree_at(lambda l: l.weight, linear, lora_weight)
# Step 2: quaxify and call the original function. The transform will call the
# original function, whilst looking up any multiple dispatch rules registered.
# (In this case for doing matmuls against LoraArrays.)
quax.quaxify(run)(lora_linear, vector)
# Appendix: Quax includes a helper to automatically apply Step 1 to all
# `eqx.nn.Linear` layers in a model.
lora_linear = lora.loraify(linear, rank=2, key=key3)

Work in progress!

Right now, the following are not supported:

  • jax.lax.scan_p
  • jax.custom_vjp

It should be fairly straightforward to add support for these; open an issue or pull request. (We've already got jax.custom_jvp, jax.lax.cond_p, and jax.lax.while_p. :) )

See also: other libraries in the JAX ecosystem

Always useful
Equinox: neural networks and everything not already in core JAX!
jaxtyping: type annotations for shape/dtype of arrays.

Deep learning
Optax: first-order gradient (SGD, Adam, ...) optimisers.
Orbax: checkpointing (async/multi-host/multi-device).
Levanter: scalable+reliable training of foundation models (e.g. LLMs).

Scientific computing
Diffrax: numerical differential equation solvers.
Optimistix: root finding, minimisation, fixed points, and least squares.
Lineax: linear solvers.
BlackJAX: probabilistic+Bayesian sampling.
sympy2jax: SymPy<->JAX conversion; train symbolic expressions via gradient descent.
PySR: symbolic regression. (Non-JAX honourable mention!)

Built on Quax
Quaxed: a namespace of already-wrapped quaxify(jnp.foo) operations.
unxt: Unitful Quantities.

Awesome JAX
Awesome JAX: a longer list of other JAX projects.

Acknowledgements

Significantly inspired by https://github.com/davisyoshida/qax, https://github.com/stanford-crfm/levanter, and jax.experimental.sparse.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quax-0.2.1.tar.gz (26.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

quax-0.2.1-py3-none-any.whl (38.1 kB view details)

Uploaded Python 3

File details

Details for the file quax-0.2.1.tar.gz.

File metadata

  • Download URL: quax-0.2.1.tar.gz
  • Upload date:
  • Size: 26.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.13

File hashes

Hashes for quax-0.2.1.tar.gz
Algorithm Hash digest
SHA256 d527780dcfc539df6bca329f43d561870b872a691128eaea52007f9ff86c95f4
MD5 674b663182703d9ba295f6d29c691949
BLAKE2b-256 35e1638586f89e19a0609b341581ec5d437cc3815823a9ddd22898136a732e40

See more details on using hashes here.

File details

Details for the file quax-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: quax-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 38.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.13

File hashes

Hashes for quax-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 1a55e66affcb7cef05cbad3170723220d8aebf9746d655bbe6ac1cd2501f2676
MD5 a3df0e47d6a4f88d57f877c5e0360b25
BLAKE2b-256 33dc502ea6cd427255ccd44fb4073dd687255f8d72066925ec440c239f6061d3

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page