Read and write CSV or TXT files in a simple manner
Project description
Quick CSV
Read and write small or large CSV/TXT files in a simple manner
Installation
pip install quick-csv
Examples for small files
Example 1: read and write csv or txt files
from quickcsv.file import *
# read a csv file
list_model=read_csv('data/test.csv')
for idx,model in enumerate(list_model):
print(model)
list_model[idx]['id']=idx
# save a csv file
write_csv('data/test1.csv',list_model)
# write a text file
write_text('data/text1.txt',"Hello World!")
# read a text file
print(read_text('data/text1.txt'))
Example 2: create dataframe from a list of models
from quickcsv.file import *
# read a csv file
list_model=read_csv('data/test.csv')
# create a dataframe from list_model
df=create_df(list_model)
# print
print(df)
Examples for large files
Example 1: read large csv file
from quickcsv.largefile import *
if __name__=="__main__":
csv_path=r"umls_atui_rels.csv" # a large file (>500 MB)
total_count=0
def process_partition(part_df,i):
print(f"Part {i}")
def process_row(row,i):
global total_count
print(i)
total_count+=1
list_results=read_large_csv(csv_file=csv_path,row_func=process_row,partition_func=process_partition)
print("Return: ")
print(list_results)
print("Total Record Num: ",total_count)
Example 2: query from a large csv file
from quickcsv.largefile import *
if __name__=="__main__":
csv_path=r"umls_sui_nodes.csv" # a large file (>500 MB)
total_count=0
# process each partition in the large file
def process_partition(part_df,i):
print(f"Part {i}")
print()
# process each row in a partition while reading
def process_row(row,i):
global total_count
print(row)
total_count+=1
# field is a field in the csv file, and value is the value you need to find within the csv file
list_results=read_large_csv(csv_file=csv_path, field="SUI",value="S0000004", append_row=True, row_func=process_row,partition_func=process_partition)
print("Return: ")
print(list_results)
print("Total Record Num: ",total_count)
Example 3: read top N records from the large csv file
from quickcsv.largefile import *
if __name__=="__main__":
csv_path=r"umls_atui_rels.csv"
total_count=0
# return top 10 rows in the csv file
list_results=read_large_csv(csv_file=csv_path,head_num=10)
print("Return: ")
print(list_results)
print("Total Record Num: ",total_count)
License
The quick-csv project is provided by Donghua Chen.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file quick-csv-0.0.5.tar.gz.
File metadata
- Download URL: quick-csv-0.0.5.tar.gz
- Upload date:
- Size: 12.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.11
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
1b8919350268c6e59cd905941afd1e05b2a4c3a3cf46109a42bee54e73074dcb
|
|
| MD5 |
1218f2fc6f4a4f113a75ed6a3cb3c636
|
|
| BLAKE2b-256 |
ce8cb2c6ada29f6f37875cf558d3813e05b880af968f34ddc45b1b508c2d5ee6
|
File details
Details for the file quick_csv-0.0.5-py3-none-any.whl.
File metadata
- Download URL: quick_csv-0.0.5-py3-none-any.whl
- Upload date:
- Size: 11.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.11
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
c1f80629677ef3416234716bc085eea79c5af9842b9c9b6783f657aed952a3fe
|
|
| MD5 |
981eaa46be93dbe5ac49af61ea3b27fe
|
|
| BLAKE2b-256 |
3eae2ae08479b33e6c05da9e9034d13d3166abf9bac88273f0387a1c0c63a896
|