Skip to main content

A toolkit to quickly analyze topic models in various methods

Project description

Quick Topic Modeling Toolkit

The quick-topic toolkit allows us to quickly evaluate topic models in various methods.

Features

  1. Topic Prevalence Trends Analysis
  2. Topic Interaction Strength Analysis
  3. Topic Transition Analysis
  4. Topic Trends of Numbers of Document Containing Keywords
  5. Topic Trends Correlation Analysis
  6. Topic Similarity between Trends
  7. Summarize Sentence Numbers By Keywords
  8. Topic visualization
  • This version supports topic modeling from both English and Chinese text.

Basic Usage

Example: generate topic models for each category in the dataset files

from quick_topic.topic_modeling.lda import build_lda_models
# step 1: data file
meta_csv_file="datasets/list_country.csv"
raw_text_folder="datasets/raw_text"
# term files used for word segementation
list_term_file = [
        "../datasets/keywords/countries.csv",
        "../datasets/keywords/leaders_unique_names.csv",
        "../datasets/keywords/carbon2.csv"
    ]
# removed words
stop_words_path = "../datasets/stopwords/hit_stopwords.txt"
# run shell
list_category = build_lda_models(
    meta_csv_file=meta_csv_file,
    raw_text_folder=raw_text_folder,
    output_folder="results/topic_modeling",
    list_term_file=list_term_file,
    stopwords_path=stop_words_path,
    prefix_filename="text_",
    num_topics=6
)

Advanced Usage

Example 1: Topic Prevalence over Time

from quick_topic.topic_prevalence.main import *
# data file: a csv file; a folder with txt files named the same as the ID field in the csv file
meta_csv_file = "datasets/list_country.csv"
text_root = r"datasets/raw_text"
# word segmentation data files
list_keywords_path = [
        "../datasets/keywords/countries.csv",
        "../datasets/keywords/leaders_unique_names.csv",
        "../datasets/keywords/carbon2.csv"
    ]
# remove keywords
stop_words_path = "../datasets/stopwords/hit_stopwords.txt"
# date range for analysis
start_year=2010
end_year=2021
# used topics
label_names = ['经济主题', '能源主题', '公众主题', '政府主题']
topic_economics = ['投资', '融资', '经济', '租金', '政府', '就业', '岗位', '工作', '职业', '技能']
topic_energy = ['绿色', '排放', '氢能', '生物能', '天然气', '风能', '石油', '煤炭', '电力', '能源', '消耗', '矿产', '燃料', '电网', '发电']
topic_people = ['健康', '空气污染', '家庭', '能源支出', '行为', '价格', '空气排放物', '死亡', '烹饪', '支出', '可再生', '液化石油气', '污染物', '回收',
                '收入', '公民', '民众']
topic_government = ['安全', '能源安全', '石油安全', '天然气安全', '电力安全', '基础设施', '零售业', '国际合作', '税收', '电网', '出口', '输电', '电网扩建',
                    '政府', '规模经济']
list_topics = [
    topic_economics,
    topic_energy,
    topic_people,
    topic_government
]
# run-all
run_topic_prevalence(
    meta_csv_file=meta_csv_file,
    raw_text_folder=text_root,
    save_root_folder="results/topic_prevalence",
    list_keywords_path=list_keywords_path,
    stop_words_path=stop_words_path,
    start_year=start_year,
    end_year=end_year,
    label_names=label_names,
    list_topics=list_topics,
    tag_field="area",
    time_field="date",
    id_field="fileId",
    prefix_filename="text_",
)

Example 2: Estimate the strength of topic interaction (shared keywords) from different topics

from quick_topic.topic_interaction.main import *
# step 1: data file
meta_csv_file = "datasets/list_country.csv"
text_root = r"datasets/raw_text"
# step2: jieba cut words file
list_keywords_path = [
        "../datasets/keywords/countries.csv",
        "../datasets/keywords/leaders_unique_names.csv",
        "../datasets/keywords/carbon2.csv"
    ]
# remove files
stopwords_path = "../datasets/stopwords/hit_stopwords.txt"
# set predefined topic labels
label_names = ['经济主题', '能源主题', '公众主题', '政府主题']
# set keywords for each topic
topic_economics = ['投资', '融资', '经济', '租金', '政府', '就业', '岗位', '工作', '职业', '技能']
topic_energy = ['绿色', '排放', '氢能', '生物能', '天然气', '风能', '石油', '煤炭', '电力', '能源', '消耗', '矿产', '燃料', '电网', '发电']
topic_people = ['健康', '空气污染', '家庭', '能源支出', '行为', '价格', '空气排放物', '死亡', '烹饪', '支出', '可再生', '液化石油气', '污染物', '回收',
                '收入', '公民', '民众']
topic_government = ['安全', '能源安全', '石油安全', '天然气安全', '电力安全', '基础设施', '零售业', '国际合作', '税收', '电网', '出口', '输电', '电网扩建',
                    '政府', '规模经济']
# a list of topics above
list_topics = [
    topic_economics,
    topic_energy,
    topic_people,
    topic_government
]
# if any keyword is the below one, then the keyword is removed from our consideration
filter_words = ['中国', '国家', '工作', '领域', '社会', '发展', '目标', '全国', '方式', '技术', '产业', '全球', '生活', '行动', '服务', '君联',
                '研究', '利用', '意见']
# dictionaries
list_country=[
    '巴西','印度','俄罗斯','南非'
]
# run shell
run_topic_interaction(
    meta_csv_file=meta_csv_file,
    raw_text_folder=text_root,
    output_folder="results/topic_interaction/divided",
    list_category=list_country, # a dictionary where each record contain a group of keywords
    stopwords_path=stopwords_path,
    weights_folder='results/topic_interaction/weights',
    list_keywords_path=list_keywords_path,
    label_names=label_names,
    list_topics=list_topics,
    filter_words=filter_words,
    # set field names
    tag_field="area",
    keyword_field="", # ignore if keyword from csv exists in the text
    time_field="date",
    id_field="fileId",
    prefix_filename="text_",
)

Example 3: Divide datasets by year or year-month

By year:

from quick_topic.topic_transition.divide_by_year import *
divide_by_year(
    meta_csv_file="../datasets/list_g20_news_all_clean.csv",
    raw_text_folder=r"datasets\g20_news_processed",
    output_folder="results/test1/divided_by_year",
    start_year=2000,
    end_year=2021,
)

By year-month:

from quick_topic.topic_transition.divide_by_year_month import *
divide_by_year_month(
    meta_csv_file="../datasets/list_g20_news_all_clean.csv",
    raw_text_folder=r"datasets\g20_news_processed",
    output_folder="results/test1/divided_by_year_month",
    start_year=2000,
    end_year=2021
)

Example 4: Show topic transition by year

from quick_topic.topic_transition.transition_by_year_month_topic import *
label="经济"
keywords=['投资','融资','经济','租金','政府', '就业','岗位','工作','职业','技能']
show_transition_by_year_month_topic(
    root_path="results/test1/divided_by_year_month",
    label=label,
    keywords=keywords,
    start_year=2000,
    end_year=2021
)

Example 5: Show keyword-based topic transition by year-month for keywords in addition to mean lines

from quick_topic.topic_transition.transition_by_year_month_term import *
root_path = "results/news_by_year_month"
select_keywords = ['燃煤', '储能', '电动汽车', '氢能', '脱碳', '风电', '水电', '天然气', '光伏', '可再生', '清洁能源', '核电']
list_all_range = [
    [[2010, 2015], [2016, 2021]],
    [[2011, 2017], [2018, 2021]],
    [[2009, 2017], [2018, 2021]],
    [[2011, 2016], [2017, 2021]],
    [[2017, 2018], [2019, 2021]],
    [[2009, 2014], [2015, 2021]],
    [[2009, 2014], [2015, 2021]],
    [[2009, 2015], [2016, 2021]],
    [[2008, 2011], [2012, 2015], [2016, 2021]],
    [[2011, 2016], [2017, 2021]],
    [[2009, 2012], [2013, 2016], [2017, 2021]],
    [[2009, 2015], [2016, 2021]]
]
output_figure_folder="results/figures"
show_transition_by_year_month_term(
    root_path="results/test1/divided_by_year_month",
    select_keywords=select_keywords,
    list_all_range=list_all_range,
    output_figure_folder=output_figure_folder,
    start_year=2000,
    end_year=2021
)

Example 6: Get time trends of numbers of documents containing topic keywords with full text.

from quick_topic.topic_trends.trends_by_year_month_fulltext import *
# define a group of topics with keywords, each topic has a label
label_names=['经济','能源','公民','政府']
keywords_economics = ['投资', '融资', '经济', '租金', '政府', '就业', '岗位', '工作', '职业', '技能']
keywords_energy = ['绿色', '排放', '氢能', '生物能', '天然气', '风能', '石油', '煤炭', '电力', '能源', '消耗', '矿产', '燃料', '电网', '发电']
keywords_people = ['健康', '空气污染', '家庭', '能源支出', '行为', '价格', '空气排放物', '死亡', '烹饪', '支出', '可再生', '液化石油气', '污染物', '回收',
                   '收入', '公民', '民众']
keywords_government = ['安全', '能源安全', '石油安全', '天然气安全', '电力安全', '基础设施', '零售业', '国际合作', '税收', '电网', '出口', '输电', '电网扩建',
                       '政府', '规模经济']
list_topics = [
    keywords_economics,
    keywords_energy,
    keywords_people,
    keywords_government
]
# call function to show trends of number of documents containing topic keywords each year-month
show_year_month_trends_with_fulltext(
    meta_csv_file="datasets/list_country.csv",
    list_topics=list_topics,
    label_names=label_names,
    save_result_path="results/topic_trends/trends_fulltext.csv",
    minimum_year=2010,
    raw_text_path=r"datasets/raw_text",
    id_field='fileId',
    time_field='date',
    prefix_filename="text_"
)

Example 7: Estimate the correlation between two trends

from quick_topic.topic_trends_correlation.topic_trends_correlation_two import *
trends_file="results/topic_trends/trends_fulltext.csv"
label_names=['经济','能源','公民','政府']
list_result=[]
list_line=[]
for i in range(0,len(label_names)-1):
    for j in range(i+1,len(label_names)):
        label1=label_names[i]
        label2=label_names[j]
        result=estimate_topic_trends_correlation_single_file(
            trend_file=trends_file,
            selected_field1=label1,
            selected_field2=label2,
            start_year=2010,
            end_year=2021,
            show_figure=False,
            time_field='Time'
        )
        list_result=[]
        line=f"({label1},{label2})\t{result['pearson'][0]}\t{result['pearson'][1]}"
        list_line.append(line)
        print()
print("Correlation analysis resutls:")
print("Pair\tPearson-Stat\tP-value")
for line in list_line:
    print(line)

Example 8: Estimate topic similarity between two groups of LDA topics

from quick_topic.topic_modeling.lda import build_lda_models
from quick_topic.topic_similarity.topic_similarity_by_category import *
# Step 1: build topic models
meta_csv_file="datasets/list_country.csv"
raw_text_folder="datasets/raw_text"
list_term_file = [
        "../datasets/keywords/countries.csv",
        "../datasets/keywords/leaders_unique_names.csv",
        "../datasets/keywords/carbon2.csv"
    ]
stop_words_path = "../datasets/stopwords/hit_stopwords.txt"
list_category = build_lda_models(
    meta_csv_file=meta_csv_file,
    raw_text_folder=raw_text_folder,
    output_folder="results/topic_similarity_two/topics",
    list_term_file=list_term_file,
    stopwords_path=stop_words_path,
    prefix_filename="text_",
    num_topics=6,
    num_words=50
)
# Step 2: estimate similarity
output_folder = "results/topic_similarity_two/topics"
keywords_file="../datasets/keywords/carbon2.csv"
estimate_topic_similarity(
    list_topic=list_category,
    topic_folder=output_folder,
    list_keywords_file=keywords_file,
)

Example 9: Stat sentence numbers by keywords

from quick_topic.topic_stat.stat_by_keyword import *
meta_csv_file='datasets/list_country.csv'
raw_text_folder="datasets/raw_text"
keywords_energy = ['煤炭', '天然气', '石油', '生物', '太阳能', '风能', '氢能', '水力', '核能']
stat_sentence_by_keywords(
    meta_csv_file=meta_csv_file,
    keywords=keywords_energy,
    id_field="fileId",
    raw_text_folder=raw_text_folder,
    contains_keyword_in_sentence='',
    prefix_file_name='text_'
)

Example 9: English topic modeling

from quick_topic.topic_visualization.topic_modeling_pipeline import *
## data
meta_csv_file = "datasets_en/list_blog_meta.csv"
raw_text_folder = f"datasets_en/raw_text"
stopwords_path = ""
## parameters
chinese_font_file = ""
num_topics=8
num_words=20
n_rows=2
n_cols=4
max_records=-1
## output
result_output_folder=f"results/en_topic{num_topics}"

if not os.path.exists(result_output_folder):
    os.mkdir(result_output_folder)

run_topic_modeling_pipeline(
    meta_csv_file=meta_csv_file,
    raw_text_folder=raw_text_folder,
    stopwords_path=stopwords_path,
    top_record_num=max_records,
    chinese_font_file="",
    num_topics=num_topics,
    num_words=num_words,
    n_rows=n_rows,n_cols=n_cols,
    result_output_folder = result_output_folder,
    load_existing_models=False,
    lang='en',
    prefix_filename=''
                           )

License

The quick-topic toolkit is provided by Donghua Chen with MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quick-topic-0.0.8.tar.gz (103.5 kB view details)

Uploaded Source

Built Distribution

quick_topic-0.0.8-py3-none-any.whl (153.4 kB view details)

Uploaded Python 3

File details

Details for the file quick-topic-0.0.8.tar.gz.

File metadata

  • Download URL: quick-topic-0.0.8.tar.gz
  • Upload date:
  • Size: 103.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.6

File hashes

Hashes for quick-topic-0.0.8.tar.gz
Algorithm Hash digest
SHA256 e921132d241bc52405e10711ab2393fdc0d26816623da66c7387e96341a799c0
MD5 2cedfbfc25cf72c02f17a0c5beb0b816
BLAKE2b-256 0d9da1e88067224798aa969de4a419913cdebc00cccd302d84ee923571e47b1a

See more details on using hashes here.

File details

Details for the file quick_topic-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: quick_topic-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 153.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.6

File hashes

Hashes for quick_topic-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 12757d91857a3b9250593ab5afc002ac68db8ca7743c65962506819e99f3a78f
MD5 04140dd09c23ae00601c1454e3045b33
BLAKE2b-256 f7e3a85541977b6318949c963478a065a188c11b10eefe7d880e3068e45f0123

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page