Skip to main content

Quiffen

Project description

Quiffen is a Python package for parsing QIF (Quicken Interchange Format) files.

The package allows users to both read QIF files and interact with the contents, and also to create a QIF structure and then output to either a QIF file, a CSV of transaction data or a pandas DataFrame.

QIF is an old file type, but has its merits because:

  • It’s standardised (apart from dates, but that can be dealt with)

    • Unlike CSVs, QIF files all follow the same format, so they don’t require special attention when they come from different sources

  • It’s written in plain text

Features

  • Import QIF files and manipulate data

  • Create QIF structures (support for Transactions, Investments, Accounts, Categories, Classes, Splits)

  • Convert Qif objects to a number of different formats and export (pandas DataFrame, CSV, QIF file)

Usage

Here’s an example parsing of a QIF file:

>>> from quiffen import Qif, QifDataType
>>> import decimal
>>> qif = Qif.parse('test.qif', day_first=False)
>>> qif.accounts
{'Quiffen Default Account': Account(name='Quiffen Default Account', desc='The default account created by Quiffen when no
other accounts were present')}
>>> acc = qif.accounts['Quiffen Default Account']
>>> acc.transactions
{'Bank': TransactionList(Transaction(date=datetime.datetime(2021, 2, 14, 0 , 0), amount=decimal.Decimal(150.0), ...), ...),
'Invst': TransactionList(...)}
>>> tr = acc.transactions['Bank'][0]
>>> print(tr)
Transaction:
    Date: 2020-02-14 00:00:00
    Amount: 67.5
    Payee: T-Mobile
    Category: Cell Phone
    Split Categories: ['Bills']
    Splits: 2 total split(s)
>>> qif.categories
{'Bills': Category(name='Bills), expense=True, hierarchy='Bills'}
>>> bills = qif.categories['Bills']
>>> print(bills.render_tree())
Bills (root)
└─ Cell Phone
>>> df = qif.to_dataframe(data_type=QifDataType.TRANSACTIONS)
>>> df.head()
        date  amount           payee  ...                           memo cleared check_number
0 2020-02-14    67.5        T-Mobile  ...                            NaN     NaN          NaN
1 2020-02-14    32.0  US Post Office  ...  money back for damaged parcel     NaN          NaN
2 2020-12-02   -10.0          Target  ...        two transactions, equal     NaN          NaN
3 2020-11-02   -25.0         Walmart  ...          non split transaction       X        123.0
4 2020-10-02  -100.0      Amazon.com  ...                   test order 1       *          NaN
...

And here’s an example of creating a QIF structure and exporting to a QIF file:

>>> import quiffen
>>> from datetime import datetime
>>> qif = quiffen.Qif()
>>> acc = quiffen.Account(name='Personal Bank Account', desc='My personal bank account with Barclays.')
>>> qif.add_account(acc)
>>> groceries = quiffen.Category(name='Groceries')
>>> essentials = quiffen.Category(name='Essentials')
>>> groceries.add_child(essentials)
>>> qif.add_category(groceries)
>>> tr = quiffen.Transaction(date=datetime.now(), amount=150.0)
>>> acc.add_transaction(tr, header=quiffen.AccountType.BANK)
>>> qif.to_qif()  # If a path is provided, this will save the file too!
'!Type:Cat\nNGroceries\nETrue\nIFalse\n^\nNGroceries:Essentials\nETrue\nIFalse\n^\n!Account\nNPersonal Bank Account\nDMy
personal bank account with Barclays.\n^\n!Type:Bank\nD02/07/2021\nT150.0\n^\n'

Documentation

Documentation can be found at: https://quiffen.readthedocs.io/en/latest/

Installation

Install Quiffen by running:

>>> pip install quiffen

Dependencies

  • pandas (optional) for exporting to DataFrames

    • The to_dataframe() method will not work without pandas installed.

To-Dos

  • Add support for the MemorizedTransaction object present in QIF files.

Contribute

GitHub pull requests welcome, though if you want to make a major change, please open an issue first for discussion.

Support

If you are having issues, please let me know.

License

The project is licensed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

quiffen-4.0.1.tar.gz (45.1 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

quiffen-4.0.1-py3-none-any.whl (31.9 kB view details)

Uploaded Python 3

File details

Details for the file quiffen-4.0.1.tar.gz.

File metadata

  • Download URL: quiffen-4.0.1.tar.gz
  • Upload date:
  • Size: 45.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.8.11

File hashes

Hashes for quiffen-4.0.1.tar.gz
Algorithm Hash digest
SHA256 4016d11db3705e80516ec3efeee214517487625395583d7269fcf7883a3b778d
MD5 7332fd3171f48791fe5d8db64d351e8b
BLAKE2b-256 be9a0f2d3f57743adf969aca4d4e8e9d0a87133b52ceee7e5f86933455b3c88a

See more details on using hashes here.

File details

Details for the file quiffen-4.0.1-py3-none-any.whl.

File metadata

  • Download URL: quiffen-4.0.1-py3-none-any.whl
  • Upload date:
  • Size: 31.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.8.11

File hashes

Hashes for quiffen-4.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 8e66f31364c7c018bc972a57bea907365c56e823a8f473fc48b9b5dd3a587193
MD5 96c9b45c12d1b43ec5fd1f5c40840905
BLAKE2b-256 8a5c9614da14933df7dff40fbbd0325da1b9aae49e6b3edf90a3e6033adf4597

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page