Skip to main content

Quantum circuit simulator for research

Project description

Qulacs

Ubuntu CI macOS CI Windows CI Wheel build Downloads

Qulacs is a Python/C++ library for fast simulation of large, noisy, or parametric quantum circuits. Qulacs is developed at QunaSys, Osaka University, NTT, and Fujitsu.

Qulacs is licensed under the MIT license.

Quick Install for Python

pip install qulacs

If your CPU is older than Intel Haswell architecture, the binary installed with the above command does not work. In this case, please install Qulacs with the following command. Even if your CPU is newer than Haswell, Qulacs installed with the below command shows better performance but takes a longer time. See "Install Python library from source" section for detail.

pip install git+https://github.com/qulacs/qulacs.git

If you have NVIDIA GPU and CUDA is installed, GPU-version can be installed with the following command:

pip install qulacs-gpu

Features

Note Qulacs-Osaka/qulacs-osaka was integrated into the qulacs/qulacs. For more details, please refer to Information section.

  • Fast quantum circuit simulation with parallelized C/C++ backend
  • Noisy quantum gate for simulation of NISQ devices
  • Parametric quantum gates for variational methods
  • Circuit compression for fast simulation
  • GPU support for fast simulation
  • Many utility functions for research

Performance

The time for simulating random quantum circuits is compared with several quantum circuit simulators in November 2020.

See the benchmark repository and Section VI and VII of our paper for the detail of this benchmark.

Note that the plots with names ending with "opt" and "heavy opt" perform circuit optimization for fast simulation, where the time for optimization is included in the execution time.

Single-thread benchmark

single thread benchmark

Multi-thread benchmark

multi thread benchmark

GPU benchmark

GPU benchmark

Install Python library from source

To install Qulacs optimized for your system, we recommend the following install procedure for faster simulation of quantum circuits, while this requires a compiler and takes time for installation. In addition, you can enable or disable optimization features such as SIMD optimization, OpenMP parallelization, and GPU support.

A binary that is installed via pip command is optimized for Haswell architecture. Thus, Qulacs installed via pip command does not work with a CPU older than Haswell. If your CPU is newer than Haswell, Qualcs built from source shows the better performance.

Requirements

  • C++ compiler (gcc or VisualStudio)
    • gcc/g++ >= 7.0.0 (checked in Linux, MacOS, cygwin, MinGW, and WSL)
    • Microsoft VisualStudio C++ 2015 or later
  • Boost >= 1.71.0 (Minimum version tested in CI)
  • Python >= 3.9
  • CMake >= 3.21
  • git
  • (option) CUDA >= 8.0
  • (option) AVX2 support

If your system supports AVX2 instructions, SIMD optimization is automatically enabled. If you want to enable GPU simulator, install qulacs through qulacs-gpu package or build from source. Note that qulacs-gpu includes CPU simulator. You don't need to install both.

Qulacs is tested on the following systems.

  • Ubuntu 20.04
  • macOS Big Sur 11
  • Windows Server 2019

If you encounter some troubles, see troubleshooting.

How to install

Install with default options (Multi-thread without GPU):

pip install .

If AVX2 instructions are not supported, SIMD optimization is automatically disabled.

Install with GPU support (CUDA is required):

USE_GPU=Yes pip install .

Install single-thread Qulacs:

USE_OMP=No pip install .

The number of threads used in Qulacs installed with default options can be controlled via the environment variable OMP_NUM_THREADS or QULACS_NUM_THREADS. While OMP_NUM_THREADS affects the parallelization of other libraries, QULACS_NUM_THREADS controls only the parallelization of QULACS. Or, if you want to force only Qulacs to use a single thread, You can install single-thread Qulacs with the above command.

For development purpose, optional dependencies can be installed as follows.

# Install development tools
pip install .[dev]
# Install dependencies for document generation
pip install .[doc]

Uninstall Qulacs:

pip uninstall qulacs

Use Qulacs as C++ library

Build with GCC

Static libraries of Qulacs can be built with the following commands:

git clone https://github.com/qulacs/qulacs.git
cd qulacs
./script/build_gcc.sh

To build shared libraries, execute make shared at ./qulacs/build folder. When you want to build with GPU, use build_gcc_with_gpu.sh instead of build_gcc.sh.

Then, you can build your codes with the following gcc command:

g++ -O2 -I ./<qulacs_path>/include -L ./<qulacs_path>/lib <your_code>.cpp -lvqcsim_static -lcppsim_static -lcsim_static -fopenmp

If you want to run your codes with GPU, include cppsim/state_gpu.hpp and use QuantumStateGpu instead of QuantumState and build with the following command:

nvcc -O2 -I ./<qulacs_path>/include -L ./<qulacs_path>/lib <your_code>.cu -lvqcsim_static -lcppsim_static -lcsim_static -lgpusim_static -D _USE_GPU -lcublas -Xcompiler -fopenmp

Build with MSVC

Static libraries of Qulacs can be built with the following command:

git clone https://github.com/qulacs/qulacs.git
cd qulacs
script/build_msvc_2017.bat

When you want to build with GPU, use build_msvc_2017_with_gpu.bat. If you use MSVC with other versions, use build_msvc_2015.bat or edit the generator name in build_msvc_2017.bat.

Your C++ codes can be built with Qulacs with the following process:

  1. Create an empty project.
  2. Select "x64" as an active solution platform.
  3. Right Click your project name in Solution Explorer, and select "Properties".
  4. At "VC++ Directories" section, add the full path to ./qulacs/include to "Include Directories"
  5. At "VC++ Directories" section, add the full path to ./qulacs/lib to "Library Directories"
  6. At "C/C++ -> Code Generation" section, change "Runtime library" to "Multi-threaded (/MT)".
  7. At "Linker -> Input" section, add vqcsim_static.lib;cppsim_static.lib;csim_static.lib; to "Additional Dependencies".

Tutorial and API documents

See the following documents for tutorials.

Python sample code

from qulacs import Observable, QuantumCircuit, QuantumState
from qulacs.gate import Y,CNOT,merge

state = QuantumState(3)
state.set_Haar_random_state()

circuit = QuantumCircuit(3)
circuit.add_X_gate(0)
merged_gate = merge(CNOT(0,1),Y(1))
circuit.add_gate(merged_gate)
circuit.add_RX_gate(1,0.5)
circuit.update_quantum_state(state)

observable = Observable(3)
observable.add_operator(2.0, "X 2 Y 1 Z 0")
observable.add_operator(-3.0, "Z 2")
value = observable.get_expectation_value(state)
print(value)

If you want to run it on GPU, install GPU-enabled qulacs and replace QuantumState in the above codes with QuantumStateGpu.

C++ sample code

#include <iostream>
#include <cppsim/state.hpp>
#include <cppsim/circuit.hpp>
#include <cppsim/observable.hpp>
#include <cppsim/gate_factory.hpp>
#include <cppsim/gate_merge.hpp>

int main(){
    QuantumState state(3);
    state.set_Haar_random_state();

    QuantumCircuit circuit(3);
    circuit.add_X_gate(0);
    auto merged_gate = gate::merge(gate::CNOT(0,1),gate::Y(1));
    circuit.add_gate(merged_gate);
    circuit.add_RX_gate(1,0.5);
    circuit.update_quantum_state(&state);

    Observable observable(3);
    observable.add_operator(2.0, "X 2 Y 1 Z 0");
    observable.add_operator(-3.0, "Z 2");
    auto value = observable.get_expectation_value(&state);
    std::cout << value << std::endl;
    return 0;
}

If you place the above codes in the root directory of this repository(e.g., qulacs/main.cpp), you can build your codes with the following command:

g++ -O2 -I ./include -L ./lib main.cpp -fopenmp -lcppsim_static -lcsim_static

If you want to run it on GPU, include cppsim/state_gpu.hpp and replace QuantumState with QuantumStateGpu.

How to cite

Please cite this arXiv paper: Qulacs: a fast and versatile quantum circuit simulator for research purpose

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qulacs-0.6.13.tar.gz (805.1 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

qulacs-0.6.13-cp313-cp313-win_amd64.whl (650.8 kB view details)

Uploaded CPython 3.13Windows x86-64

qulacs-0.6.13-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

qulacs-0.6.13-cp313-cp313-macosx_11_0_arm64.whl (646.7 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

qulacs-0.6.13-cp313-cp313-macosx_10_13_x86_64.whl (725.9 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

qulacs-0.6.13-cp312-cp312-win_amd64.whl (650.9 kB view details)

Uploaded CPython 3.12Windows x86-64

qulacs-0.6.13-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

qulacs-0.6.13-cp312-cp312-macosx_11_0_arm64.whl (646.6 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

qulacs-0.6.13-cp312-cp312-macosx_10_13_x86_64.whl (725.9 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

qulacs-0.6.13-cp311-cp311-win_amd64.whl (648.9 kB view details)

Uploaded CPython 3.11Windows x86-64

qulacs-0.6.13-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

qulacs-0.6.13-cp311-cp311-macosx_11_0_arm64.whl (646.1 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

qulacs-0.6.13-cp311-cp311-macosx_10_9_x86_64.whl (719.8 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

qulacs-0.6.13-cp310-cp310-win_amd64.whl (647.9 kB view details)

Uploaded CPython 3.10Windows x86-64

qulacs-0.6.13-cp310-cp310-manylinux_2_28_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

qulacs-0.6.13-cp310-cp310-macosx_11_0_arm64.whl (645.4 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

qulacs-0.6.13-cp310-cp310-macosx_10_9_x86_64.whl (718.6 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

qulacs-0.6.13-cp39-cp39-win_amd64.whl (647.1 kB view details)

Uploaded CPython 3.9Windows x86-64

qulacs-0.6.13-cp39-cp39-manylinux_2_28_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ x86-64

qulacs-0.6.13-cp39-cp39-macosx_11_0_arm64.whl (645.5 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

qulacs-0.6.13-cp39-cp39-macosx_10_9_x86_64.whl (718.6 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

File details

Details for the file qulacs-0.6.13.tar.gz.

File metadata

  • Download URL: qulacs-0.6.13.tar.gz
  • Upload date:
  • Size: 805.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.10.8

File hashes

Hashes for qulacs-0.6.13.tar.gz
Algorithm Hash digest
SHA256 d233a57a22a0671a62f04eac54226da6e37110ba3677bd356aefa7a9ea7ca543
MD5 f6fc5d99177f8c87b0afc4f55b4c6d3c
BLAKE2b-256 5f8d50ea4e2d81e4a6c56301e0be53d0f53bba88e17111922fb4aac7b039136a

See more details on using hashes here.

File details

Details for the file qulacs-0.6.13-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: qulacs-0.6.13-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 650.8 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.11

File hashes

Hashes for qulacs-0.6.13-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 01b239924f5a3b5d744a4fd032ede840769beaa0266866bf83a6a4f05833e3f0
MD5 166becb1c967f8088a7210921bca85ec
BLAKE2b-256 57f9ba94e8240ee0dde54bacedab7300ab4c2a1418fabac2428cb70243a0e326

See more details on using hashes here.

File details

Details for the file qulacs-0.6.13-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.13-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 dccfee783c79a86b6c503a7b2bf892081edfe77182570b76b2e077cefc12a4d0
MD5 694b3e90050115eb0a0012a03e0c710a
BLAKE2b-256 93099c2f5b2143ac24ff0ed2bc850ce981d7d799761b7620b8415b91bf15fa74

See more details on using hashes here.

File details

Details for the file qulacs-0.6.13-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.13-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2a2863f6719a90eac393bb6f3632cdab9d51e027df8c5cbf943204eef0102873
MD5 e501e33944995a4fb97dc569d6e3a4bf
BLAKE2b-256 57d5f164c48fcbb6b2c94c270b7eefd1112d1dbf20b7f545aa35b3d7731adea3

See more details on using hashes here.

File details

Details for the file qulacs-0.6.13-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.13-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 4d95c7e42106034d5b045cc65b7b8a56a0e74fd3611c0d87c8799367df4c60e4
MD5 0fe79ae4259d9aa9120ca1c439c4514f
BLAKE2b-256 9aac5b9908a5b2d56a30112ef625b52daef66f9ce31a2b0610d01460a1d47963

See more details on using hashes here.

File details

Details for the file qulacs-0.6.13-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: qulacs-0.6.13-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 650.9 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for qulacs-0.6.13-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 202d1cc34d841d0c9b32286bb39344bbd4018850ee17bca759dcad431ea230b8
MD5 afc937746073c833f1baf70229c8b296
BLAKE2b-256 717d0e55e5d7e03eccdfeb6ed6c3befaa45b8fb94af9b497c8947e0012ffbf00

See more details on using hashes here.

File details

Details for the file qulacs-0.6.13-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.13-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 cd2f2961b760f2b4286a8b669a709e3f161e9e6aa0f14b2124985bc6880087b2
MD5 910180ec0fa7f26b0b67070beb0e8797
BLAKE2b-256 2f3b7aa178b641927dc31a157ef8bee91ac225c8bd4b194b209f5bdd5383ab73

See more details on using hashes here.

File details

Details for the file qulacs-0.6.13-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.13-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ab14dd6328f650c1665d593f125b344d0e4c7f975473bbe0dfc9ab1d39806f6a
MD5 bc9ee4fb4f9e1c760c22af69cded98b1
BLAKE2b-256 6092ed4734d3a43a722d8b8ecce18c4c39062e1f9a7368ecace419b54de0e7c0

See more details on using hashes here.

File details

Details for the file qulacs-0.6.13-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.13-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 1762f380b483f8ca505268340d4b51ed6034d8f9bb6a93b6fb71b04c3b0ccfd3
MD5 547de08a79bc96542106b3c143befd6b
BLAKE2b-256 6822e33c90ba3192a5a6bb7249190957f1cd568b4a54993a4c40ae734daf0247

See more details on using hashes here.

File details

Details for the file qulacs-0.6.13-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: qulacs-0.6.13-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 648.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.9

File hashes

Hashes for qulacs-0.6.13-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 93841d0bcfa60365be9f0adb285cf55aff77c3cb19a07b88875654c4c7a1667c
MD5 46a9a656972a8192739dd573b782febf
BLAKE2b-256 32661a695c071202c40b4c556cb7fefee3ab16aebd4a3550da306480fefcc548

See more details on using hashes here.

File details

Details for the file qulacs-0.6.13-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.13-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 fc6cf89608ee3f1faf05124748597f52a51c908f0aefc830d718b002563bda30
MD5 dcc045e44872e16352ec1031e20e7870
BLAKE2b-256 bb475b3e1d33481489798361615e07b972904f299d7a89b638588d7b9c21ec6d

See more details on using hashes here.

File details

Details for the file qulacs-0.6.13-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.13-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 373589613c201f520feea8c1d3ec43521dfdb0540d1a8c1653c2086a8cef6181
MD5 469ca946b52e84463be51baee49a91df
BLAKE2b-256 13d501e534e7e84eee206862af95b4df45b92a25299a31041f5f70e74a856c3b

See more details on using hashes here.

File details

Details for the file qulacs-0.6.13-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.13-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ea28f8d633112bcae9def68d0b28f3f12cad40ddb0c8b75b87882351eebb3362
MD5 acf6bd1620bfd6142ed3d1b649c01ecd
BLAKE2b-256 70d3d022f9021c363a0edcdef56dac0a139afa9b70ec10e3ba4c705ac3e80c1d

See more details on using hashes here.

File details

Details for the file qulacs-0.6.13-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: qulacs-0.6.13-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 647.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.10.11

File hashes

Hashes for qulacs-0.6.13-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4be8341b3508baccb357413c768f0b97bc82f0023e3ce441594fbbc47122a0a5
MD5 07e1b6cdf7cd12416df72ffdfd360e94
BLAKE2b-256 c0c23a268d3899f42e312c53beee323ba6c43a17c5b4ac07773349f1802fa3b7

See more details on using hashes here.

File details

Details for the file qulacs-0.6.13-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.13-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4df5188d9f5b9df9bcceb99585a85818001bc57914bb63a855ef468765ecbfde
MD5 2d3a991c5b239f6d99480cbc3e4e6a91
BLAKE2b-256 a7db491cacbbb1f43ad22750bda840cf5f4c789eaf2acba97ebd07fedb60b386

See more details on using hashes here.

File details

Details for the file qulacs-0.6.13-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.13-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bb716f377744471945f152642612223c91d2d7a774a97f08219701e5a59415e7
MD5 df3a963072ac8738a2df0bcc7ba14007
BLAKE2b-256 636b4727c8c615df86d84c67eb83323d3eef77e4e04ef89337b2758a5f1d2269

See more details on using hashes here.

File details

Details for the file qulacs-0.6.13-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.13-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0f4ae96009059322f8798775accd1055729a223cc2cdbd5cd7f51e9ef0fc09fb
MD5 4ca80ad64b8a41682b3d7d5f3263f1d9
BLAKE2b-256 0411af4910b1a2f0656d1568573a3691f103865e3f142ca2367b540545f6230f

See more details on using hashes here.

File details

Details for the file qulacs-0.6.13-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: qulacs-0.6.13-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 647.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.13

File hashes

Hashes for qulacs-0.6.13-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8f30d8d28fe25da6caedb1f88bf660fd422967a03169d5c34b5ea9e5b68876f2
MD5 649c0de6bfabcec195a66ff71b305ae9
BLAKE2b-256 af5c9dc369f2ea1390d37186d8e10af1cf5050c75851a6dc9d27a4c13291c155

See more details on using hashes here.

File details

Details for the file qulacs-0.6.13-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.13-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 57c7fdc84d3f0a4fe22a24c9a6a0acc8e7707f3ec87a851b1f00b921f6262f77
MD5 21eb070fec38a9289cf8c0bc1ef44ba4
BLAKE2b-256 47b075c0ccee0ce5b3146224c620d97bc8cb0f5cc6d454fab496e93761d4c036

See more details on using hashes here.

File details

Details for the file qulacs-0.6.13-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.13-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dc060e38c6e4e67e21260af1f43145d62c922a9e6229e85cce870d811a2e4f74
MD5 f30137c33ef84bab5968e316d8efc8bc
BLAKE2b-256 e9cbea9213c54e40df2924608f72b0338d8ff2fa02e1455f022b733e27726c7f

See more details on using hashes here.

File details

Details for the file qulacs-0.6.13-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for qulacs-0.6.13-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7874da8412cbd0321784f04873e77c6f030795ee8d58d0a4e2a73361efc81325
MD5 6241fa8d90c81f72d1229c27d3c32893
BLAKE2b-256 263a445e4ad3525f3d9bd799ba5c03fe29447f4fbbef7874727da34c02bdf459

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page