Skip to main content

Useful scripts for RACS.

Project description

Docker Build and Push Tests Python package PyPi Code style: blackpre-commit.ci status

RACS-tools

Useful scripts for RACS

Installation

Conda

The recommended way to install. First obtain conda from Anaconda or Miniconda. Clone this repo, build the environment, and activate:

git clone https://github.com/AlecThomson/RACS-tools
cd RACS-tools
conda env create
conda activate racs-tools

Docker / Singularity

A Dockerfile is provided if you wish to build your own container. Otherwise, images are provided on DockerHub. You can pull these by running e.g.

docker pull alecthomson/racstools

or

singularity pull docker://alecthomson/racstools

NOTE: These builds are still experimental, and have not been widely tested. In particular, parallelisation may not work as expected.

Pip

You can also use the package manager pip to install RACS-tools.

# Stable
pip install RACS-tools
# Latest
pip install git+https://github.com/AlecThomson/RACS-tools

Usage

$ beamcon_2D -h
usage: beamcon_2D [-h] [-p PREFIX] [-s SUFFIX] [-o OUTDIR] [--conv_mode {robust,scipy,astropy,astropy_fft}] [-v] [-d] [--bmaj BMAJ] [--bmin BMIN] [--bpa BPA] [--log LOG] [--logfile LOGFILE] [-c CUTOFF] [--circularise] [-t TOLERANCE] [-e EPSILON] [-n NSAMPS] [--ncores N_CORES | --mpi] infile [infile ...]

    Smooth a field of 2D images to a common resolution.

    - Parallelisation can run using multiprocessing or MPI.

    - Default names of output files are /path/to/beamlog{infile//.fits/.{SUFFIX}.fits}

    - By default, the smallest common beam will be automatically computed.
    - Optionally, you can specify a target beam to use.



positional arguments:
  infile                Input FITS image(s) to smooth (can be a wildcard) - beam info must be in header.

optional arguments:
  -h, --help            show this help message and exit
  -p PREFIX, --prefix PREFIX
                        Add prefix to output filenames.
  -s SUFFIX, --suffix SUFFIX
                        Add suffix to output filenames [sm].
  -o OUTDIR, --outdir OUTDIR
                        Output directory of smoothed FITS image(s) [same as input file].
  --conv_mode {robust,scipy,astropy,astropy_fft}
                        Which method to use for convolution [robust].
                                'robust' computes the analytic FT of the convolving Gaussian.
                                Note this mode can now handle NaNs in the data.
                                Can also be 'scipy', 'astropy', or 'astropy_fft'.
                                Note these other methods cannot cope well with small convolving beams.

  -v, --verbosity       Increase output verbosity
  -d, --dryrun          Compute common beam and stop [False].
  --bmaj BMAJ           Target BMAJ (arcsec) to convolve to [None].
  --bmin BMIN           Target BMIN (arcsec) to convolve to [None].
  --bpa BPA             Target BPA (deg) to convolve to [None].
  --log LOG             Name of beamlog file. If provided, save beamlog data to a file [None - not saved].
  --logfile LOGFILE     Save logging output to file
  -c CUTOFF, --cutoff CUTOFF
                        Cutoff BMAJ value (arcsec) -- Blank channels with BMAJ larger than this [None -- no limit]
  --circularise         Circularise the final PSF -- Sets the BMIN = BMAJ, and BPA=0.
  -t TOLERANCE, --tolerance TOLERANCE
                        tolerance for radio_beam.commonbeam.
  -e EPSILON, --epsilon EPSILON
                        epsilon for radio_beam.commonbeam.
  -n NSAMPS, --nsamps NSAMPS
                        nsamps for radio_beam.commonbeam.
  --ncores N_CORES      Number of processes (uses multiprocessing).
  --mpi                 Run with MPI.
$ beamcon_3D -h
usage: beamcon_3D [-h] [--uselogs] [--mode MODE] [--conv_mode {robust,scipy,astropy,astropy_fft}] [-v] [--logfile LOGFILE] [-d] [-p PREFIX] [-s SUFFIX] [-o OUTDIR] [--bmaj BMAJ] [--bmin BMIN] [--bpa BPA] [-c CUTOFF] [--circularise] [--ref_chan {first,last,mid}] [-t TOLERANCE] [-e EPSILON] [-n NSAMPS] infile [infile ...]

    Smooth a field of 3D cubes to a common resolution.

    - Parallelisation is done using MPI.

    - Default names of output files are /path/to/beamlog{infile//.fits/.{SUFFIX}.fits}

    - By default, the smallest common beam will be automatically computed.
    - Optionally, you can specify a target beam to use.

    - It is currently assumed that cubes will be 4D with a dummy Stokes axis.
    - Iterating over Stokes axis is not yet supported.



positional arguments:
  infile                Input FITS image(s) to smooth (can be a wildcard)
                                - CASA beamtable will be used if present i.e. if CASAMBM = T
                                - Otherwise beam info must be in co-located beamlog files.
                                - beamlog must have the name /path/to/beamlog{infile//.fits/.txt}


optional arguments:
  -h, --help            show this help message and exit
  --uselogs             Get convolving information from previous run [False].
  --mode MODE           Common resolution mode [natural].
                                natural -- allow frequency variation.
                                total -- smooth all plans to a common resolution.

  --conv_mode {robust,scipy,astropy,astropy_fft}
                        Which method to use for convolution [robust].
                                'robust' computes the analytic FT of the convolving Gaussian.
                                Note this mode can now handle NaNs in the data.
                                Can also be 'scipy', 'astropy', or 'astropy_fft'.
                                Note these other methods cannot cope well with small convolving beams.

  -v, --verbosity       Increase output verbosity
  --logfile LOGFILE     Save logging output to file
  -d, --dryrun          Compute common beam and stop [False].
  -p PREFIX, --prefix PREFIX
                        Add prefix to output filenames.
  -s SUFFIX, --suffix SUFFIX
                        Add suffix to output filenames [{MODE}].
  -o OUTDIR, --outdir OUTDIR
                        Output directory of smoothed FITS image(s) [None - same as input].
  --bmaj BMAJ           BMAJ to convolve to [max BMAJ from given image(s)].
  --bmin BMIN           BMIN to convolve to [max BMAJ from given image(s)].
  --bpa BPA             BPA to convolve to [0].
  -c CUTOFF, --cutoff CUTOFF
                        Cutoff BMAJ value (arcsec) -- Blank channels with BMAJ larger than this [None -- no limit]
  --circularise         Circularise the final PSF -- Sets the BMIN = BMAJ, and BPA=0.
  --ref_chan {first,last,mid}
                        Reference psf for header [None].
                                    first  -- use psf for first frequency channel.
                                    last -- use psf for the last frequency channel.
                                    mid -- use psf for the centre frequency channel.
                                    Will use the CRPIX channel if not set.

  -t TOLERANCE, --tolerance TOLERANCE
                        tolerance for radio_beam.commonbeam.
  -e EPSILON, --epsilon EPSILON
                        epsilon for radio_beam.commonbeam.
  -n NSAMPS, --nsamps NSAMPS
                        nsamps for radio_beam.commonbeam.
$ getnoise_list -h
usage: getnoise_list [-h] [-s] [-b] [-c CLIPLEV] [-i ITERATE] [-f FILE] qfile ufile

 Find bad channels by checking statistics of each channel image.

positional arguments:
  qfile                 Stokes Q fits file
  ufile                 Stokes U fits file

options:
  -h, --help            show this help message and exit
  -s, --save_noise      Save noise values to disk [default False]
  -b, --blank           Blank bad channels? [default False - just print out bad channels]
  -c CLIPLEV, --cliplev CLIPLEV
                        Clip level in sigma, make this number lower to be more aggressive [default 5]
  -i ITERATE, --iterate ITERATE
                        Iterate flagging check N times [dafult 1 -- one pass only]
  -f FILE, --file FILE  Filename to write bad channel indices to file [None --  do not write]

If finding a common beam fails, try tweaking the tolerance, epsilon, and nsamps parameters. See radio-beam for more details.

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

License

BSD-3-Clause

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

racs_tools-3.0.4.tar.gz (29.9 kB view hashes)

Uploaded Source

Built Distribution

racs_tools-3.0.4-py3-none-any.whl (32.0 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page