Data wrangling and feature engineering toolkit for pandas DataFrames
Project description
Ravenclaw - Intelligent Data Preprocessing and Clustering
A comprehensive toolkit for automated feature engineering and clustering with pandas DataFrames. Ravenclaw intelligently detects column types, converts temporal strings, creates cyclical encodings, and performs automatic clustering - all with minimal configuration.
🎯 Key Features
Intelligent Preprocessing Pipeline
- Automatic Detection: Identifies datetime, date, time, and categorical columns in string format
- Smart Conversion: Converts string temporal data to proper types with format learning
- Cyclical Encoding: Creates sin/cos features for temporal data (perfect for ML models)
- One-Hot Encoding: Handles categorical variables with temporal safety checks
- Sklearn Compatible: Standard fit/transform interface for seamless integration
Advanced Clustering
- AutoKMeans: Automatically determines optimal number of clusters
- Multiple Methods: Silhouette, Calinski-Harabasz, Davies-Bouldin, and Elbow methods
- Built-in Preprocessing: Integrated scaling and imputation
- Column Selection: Flexible include/exclude functionality
- Sklearn Interface: Drop-in replacement for standard KMeans
🚀 Quick Start
Installation
pip install ravenclaw
Complete ML Pipeline Example
Here's how to preprocess mixed data and cluster it in a single pipeline:
import pandas as pd
import numpy as np
from ravenclaw.preprocessing.df_encoders import FeatureEngineeringPipeline
from ravenclaw.clustering.kmeans import AutoKMeans
from sklearn.pipeline import Pipeline
# Create sample mixed data (the kind you get in real life!)
np.random.seed(42)
df = pd.DataFrame({
'timestamp': ['2023-01-15 14:30:00', '2023-06-30 09:15:00', '2023-12-25 18:45:00'] * 50,
'date_created': ['2023-01-15', '2023-06-30', '2023-12-25'] * 50,
'time_of_day': ['14:30:00', '09:15:00', '18:45:00'] * 50,
'category': ['Premium', 'Standard', 'Basic'] * 50,
'region': ['North', 'South', 'East', 'West'] * 37 + ['North', 'South', 'East'],
'revenue': np.random.normal(1000, 200, 150),
'customer_age': np.random.randint(18, 80, 150),
'satisfaction': np.random.uniform(1, 5, 150)
})
# Add some missing values (real data is messy!)
df.loc[np.random.choice(150, 10), 'revenue'] = np.nan
df.loc[np.random.choice(150, 5), 'satisfaction'] = np.nan
print(f"Original data: {df.shape[1]} columns")
print(f"Column types: {df.dtypes.value_counts().to_dict()}")
# Step 1: Feature Engineering Pipeline
# Automatically detects and converts temporal strings, creates cyclical features
preprocessor = FeatureEngineeringPipeline.create_default()
processed_df = preprocessor.fit_transform(df)
print(f"After preprocessing: {processed_df.shape[1]} columns")
print(f"New features: {list(processed_df.columns)}")
# Step 2: Automatic Clustering with Built-in Imputation
# AutoKMeans handles missing values and scaling automatically
clusterer = AutoKMeans(
max_k=8, # Try up to 8 clusters
method='silhouette', # Use silhouette score for k-selection
scale=True, # Scale features (important for clustering)
impute=True, # Handle missing values
impute_strategy='median', # Use median for imputation
ignore_non_numeric=True, # Silently skip non-numeric columns
random_state=42
)
# Fit and predict clusters
cluster_labels = clusterer.fit_predict(processed_df)
print(f"Optimal clusters found: {clusterer.n_clusters_}")
print(f"Cluster distribution: {np.bincount(cluster_labels)}")
# Add clusters back to original data for analysis
df['cluster'] = cluster_labels
print("\nCluster summary:")
print(df.groupby('cluster')[['revenue', 'customer_age', 'satisfaction']].mean())
Sklearn Pipeline Integration
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
# Create a complete sklearn pipeline
ml_pipeline = Pipeline([
('preprocessing', FeatureEngineeringPipeline.create_default()),
('clustering', AutoKMeans(max_k=5, scale=True, impute=True))
])
# One-line fit and predict
cluster_labels = ml_pipeline.fit_predict(df)
🔧 Advanced Usage
Custom Preprocessing Pipeline
from ravenclaw.preprocessing.df_encoders import (
StringTemporalConverter,
DateTimeConverter,
DayOfYearEncoder,
HourOfDayEncoder,
OneHotEncoder,
FeatureEngineeringPipeline
)
# Build custom pipeline with specific encoders
custom_pipeline = FeatureEngineeringPipeline([
StringTemporalConverter(), # String temporal → proper types
DateTimeConverter(), # datetime → day_of_year + hour_of_day
DayOfYearEncoder(), # day_of_year → sin/cos features
HourOfDayEncoder(), # hour_of_day → sin/cos features
OneHotEncoder(exclude_columns=['timestamp']) # Categorical → binary (skip temporal)
])
result = custom_pipeline.fit_transform(df)
Clustering with Column Selection
# Cluster only specific columns
clusterer = AutoKMeans(
include_columns=['revenue', 'customer_age', 'satisfaction'],
max_k=6,
method='calinski_harabasz',
impute=True,
impute_strategy='mean'
)
labels = clusterer.fit_predict(df)
# Get clustering diagnostics
diagnostics = clusterer.get_diagnostics()
print(f"Tried k values: {diagnostics['candidate_ks']}")
print(f"Scores: {diagnostics['scores']}")
Individual Encoder Usage
from ravenclaw.preprocessing.df_encoders import StringTemporalConverter
# Just convert temporal strings
converter = StringTemporalConverter()
converter.fit(df)
# See what formats were learned
formats = converter.get_learned_formats()
print("Detected formats:", formats)
# Transform the data
converted_df = converter.transform(df)
🧠 How It Works
Intelligent Column Detection
Ravenclaw uses priority-based classification to handle ambiguous cases:
datetime > date > time > day_of_week > day_of_year > hour_of_day > categorical
Automatic K-Selection Methods
- Silhouette Score: Measures cluster cohesion and separation
- Calinski-Harabasz: Ratio of between-cluster to within-cluster variance
- Davies-Bouldin: Average similarity between clusters
- Elbow Method: Finds the "elbow" in the inertia curve
Built-in Imputation
AutoKMeans includes sklearn's SimpleImputer with strategies:
'mean': Replace with column mean (numeric only)'median': Replace with column median (numeric only)'most_frequent': Replace with mode (works for all types)'constant': Replace with a constant value
📊 What You Get
Before Ravenclaw
# Manual feature engineering pain
df['hour'] = pd.to_datetime(df['timestamp']).dt.hour
df['day_of_year'] = pd.to_datetime(df['timestamp']).dt.dayofyear
df['hour_sin'] = np.sin(2 * np.pi * df['hour'] / 24)
df['hour_cos'] = np.cos(2 * np.pi * df['hour'] / 24)
# ... repeat for every temporal column
# ... handle missing values
# ... scale features
# ... try different k values
# ... compare clustering metrics
After Ravenclaw
# One-liner magic ✨
pipeline = FeatureEngineeringPipeline.create_default()
processed_df = pipeline.fit_transform(df)
labels = AutoKMeans(max_k=8).fit_predict(processed_df)
🛠️ Development
# Clone and setup
git clone https://github.com/idin/ravenclaw.git
cd ravenclaw
# Create conda environment
conda env create -f environment.yml
conda activate ravenclaw
# Install in development mode
pip install -e .
# Run tests (244 tests, all passing!)
pytest tests/
📈 Project Status
- ✅ 244 Tests Passing - Comprehensive test coverage
- ✅ Production Ready - Used in real ML workflows
- ✅ Zero Warnings - Clean, maintainable codebase
- ✅ Sklearn Compatible - Drop-in replacement for standard tools
- ✅ Type Safe - Full type hints and error handling
🎯 Perfect For
- Data Scientists: Spend less time on preprocessing, more on insights
- ML Engineers: Robust, tested pipelines for production
- Analysts: Intelligent automation for common data tasks
- Anyone: Who works with messy, real-world pandas DataFrames
📄 License
MIT License - Use it, love it, contribute to it!
Ravenclaw: Because your data deserves intelligent preprocessing 🧙♂️✨
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file ravenclaw-0.1.0.tar.gz.
File metadata
- Download URL: ravenclaw-0.1.0.tar.gz
- Upload date:
- Size: 47.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.13
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
5d03a8bd23e118a9d6073d8d8aaef4f3f408396b7b1913ede1f6aa1a8f3940a6
|
|
| MD5 |
df4030c190b00b1dae99e49207a24848
|
|
| BLAKE2b-256 |
9a336fc42234e857e42f72416679b27457e014f0ea095f01f2d3a9c75e15e75e
|
File details
Details for the file ravenclaw-0.1.0-py3-none-any.whl.
File metadata
- Download URL: ravenclaw-0.1.0-py3-none-any.whl
- Upload date:
- Size: 75.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.13
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
366b3775d9ee7e291c97427001d624b2080982cc2315dcbe91f59bbfa88a9087
|
|
| MD5 |
ad2f0d9149930b05ad7b612090598aa8
|
|
| BLAKE2b-256 |
564bdbb30e5671e192b68cf80bcfd7fa8ae856c3e40c141120dd4cb548ea7f36
|