Skip to main content

Ray provides a simple, universal API for building distributed applications.

Project description

https://github.com/ray-project/ray/raw/master/doc/source/images/ray_header_logo.png https://readthedocs.org/projects/ray/badge/?version=master https://img.shields.io/badge/Ray-Join%20Slack-blue https://img.shields.io/badge/Discuss-Ask%20Questions-blue https://img.shields.io/twitter/follow/raydistributed.svg?style=social&logo=twitter https://img.shields.io/badge/Get_started_for_free-3C8AE9?logo=data%3Aimage%2Fpng%3Bbase64%2CiVBORw0KGgoAAAANSUhEUgAAABAAAAAQCAYAAAAf8%2F9hAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAAEKADAAQAAAABAAAAEAAAAAA0VXHyAAABKElEQVQ4Ea2TvWoCQRRGnWCVWChIIlikC9hpJdikSbGgaONbpAoY8gKBdAGfwkfwKQypLQ1sEGyMYhN1Pd%2B6A8PqwBZeOHt%2FvsvMnd3ZXBRFPQjBZ9K6OY8ZxF%2B0IYw9PW3qz8aY6lk92bZ%2BVqSI3oC9T7%2FyCVnrF1ngj93us%2B540sf5BrCDfw9b6jJ5lx%2FyjtGKBBXc3cnqx0INN4ImbI%2Bl%2BPnI8zWfFEr4chLLrWHCp9OO9j19Kbc91HX0zzzBO8EbLK2Iv4ZvNO3is3h6jb%2BCwO0iL8AaWqB7ILPTxq3kDypqvBuYuwswqo6wgYJbT8XxBPZ8KS1TepkFdC79TAHHce%2F7LbVioi3wEfTpmeKtPRGEeoldSP%2FOeoEftpP4BRbgXrYZefsAI%2BP9JU7ImyEAAAAASUVORK5CYII%3D

Ray is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a set of AI libraries for simplifying ML compute:

https://github.com/ray-project/ray/raw/master/doc/source/images/what-is-ray-padded.svg

Learn more about Ray AI Libraries:

  • Data: Scalable Datasets for ML

  • Train: Distributed Training

  • Tune: Scalable Hyperparameter Tuning

  • RLlib: Scalable Reinforcement Learning

  • Serve: Scalable and Programmable Serving

Or more about Ray Core and its key abstractions:

  • Tasks: Stateless functions executed in the cluster.

  • Actors: Stateful worker processes created in the cluster.

  • Objects: Immutable values accessible across the cluster.

Learn more about Monitoring and Debugging:

Ray runs on any machine, cluster, cloud provider, and Kubernetes, and features a growing ecosystem of community integrations.

Install Ray with: pip install ray. For nightly wheels, see the Installation page.

Why Ray?

Today’s ML workloads are increasingly compute-intensive. As convenient as they are, single-node development environments such as your laptop cannot scale to meet these demands.

Ray is a unified way to scale Python and AI applications from a laptop to a cluster.

With Ray, you can seamlessly scale the same code from a laptop to a cluster. Ray is designed to be general-purpose, meaning that it can performantly run any kind of workload. If your application is written in Python, you can scale it with Ray, no other infrastructure required.

More Information

Older documents:

Getting Involved

Platform

Purpose

Estimated Response Time

Support Level

Discourse Forum

For discussions about development and questions about usage.

< 1 day

Community

GitHub Issues

For reporting bugs and filing feature requests.

< 2 days

Ray OSS Team

Slack

For collaborating with other Ray users.

< 2 days

Community

StackOverflow

For asking questions about how to use Ray.

3-5 days

Community

Meetup Group

For learning about Ray projects and best practices.

Monthly

Ray DevRel

Twitter

For staying up-to-date on new features.

Daily

Ray DevRel

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ray-2.44.1-cp312-cp312-win_amd64.whl (25.7 MB view details)

Uploaded CPython 3.12 Windows x86-64

ray-2.44.1-cp312-cp312-manylinux2014_x86_64.whl (68.1 MB view details)

Uploaded CPython 3.12

ray-2.44.1-cp312-cp312-manylinux2014_aarch64.whl (67.2 MB view details)

Uploaded CPython 3.12

ray-2.44.1-cp312-cp312-macosx_11_0_arm64.whl (65.4 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

ray-2.44.1-cp312-cp312-macosx_10_15_x86_64.whl (68.1 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

ray-2.44.1-cp311-cp311-win_amd64.whl (25.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

ray-2.44.1-cp311-cp311-manylinux2014_x86_64.whl (68.1 MB view details)

Uploaded CPython 3.11

ray-2.44.1-cp311-cp311-manylinux2014_aarch64.whl (67.2 MB view details)

Uploaded CPython 3.11

ray-2.44.1-cp311-cp311-macosx_11_0_arm64.whl (65.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

ray-2.44.1-cp311-cp311-macosx_10_15_x86_64.whl (68.1 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

ray-2.44.1-cp310-cp310-win_amd64.whl (25.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

ray-2.44.1-cp310-cp310-manylinux2014_x86_64.whl (67.9 MB view details)

Uploaded CPython 3.10

ray-2.44.1-cp310-cp310-manylinux2014_aarch64.whl (67.0 MB view details)

Uploaded CPython 3.10

ray-2.44.1-cp310-cp310-macosx_11_0_arm64.whl (65.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

ray-2.44.1-cp310-cp310-macosx_10_15_x86_64.whl (68.2 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

ray-2.44.1-cp39-cp39-win_amd64.whl (25.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

ray-2.44.1-cp39-cp39-manylinux2014_x86_64.whl (68.0 MB view details)

Uploaded CPython 3.9

ray-2.44.1-cp39-cp39-manylinux2014_aarch64.whl (67.0 MB view details)

Uploaded CPython 3.9

ray-2.44.1-cp39-cp39-macosx_11_0_arm64.whl (65.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

ray-2.44.1-cp39-cp39-macosx_10_15_x86_64.whl (68.2 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

File details

Details for the file ray-2.44.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: ray-2.44.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 25.7 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.12

File hashes

Hashes for ray-2.44.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 2d62f875c36432b6d5ee666ec23280d23a8de44c0a14a56959aa9b75e644b49f
MD5 2d9e9bb5963c68b84bf31c2a60065d50
BLAKE2b-256 632c3327122f598aa5fe6e767fcd42eeb0c4dca8e960e6fe06ef26a3691fd26c

See more details on using hashes here.

File details

Details for the file ray-2.44.1-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ray-2.44.1-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a4c0175cc40e6b065391bc8be0f208bacf8cee7ee61392c7791004f17622e7bd
MD5 868f3374feb87c9ddadfb5776e446ea6
BLAKE2b-256 7f6fd411fcad98b90247318fee6645a803934fc7a6bf4fb49bfcddf80ac00a85

See more details on using hashes here.

File details

Details for the file ray-2.44.1-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ray-2.44.1-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3d9807c9c31d42793ca309747b9c7affdd7488a532979aa346d4c889b828783a
MD5 efefd41ad33f36196c092389b9473518
BLAKE2b-256 8d19947c991a6ef79c53162565b6cf821f16c0594fd5d0c04ce6c2cec580e469

See more details on using hashes here.

File details

Details for the file ray-2.44.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ray-2.44.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 865a83eaf06d5e988c441bc2607b8d1f326d952d139f66c18ea21f077fedbff4
MD5 fbd253726cea4115e3242202bf434884
BLAKE2b-256 08c8162770f28ffca64bdde13a42edd6eeedc1c94fd9af4bd503695c255f6446

See more details on using hashes here.

File details

Details for the file ray-2.44.1-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ray-2.44.1-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b6c7b677035c08141ae01adc25eade20a979eb7c9cabfe9ad1c99396e157ed59
MD5 7ca91a683f6a9d5a3582d2363337a07e
BLAKE2b-256 b084782553364b7733ab522627940a064332ad071aea6d353a1b35d6ddd184f1

See more details on using hashes here.

File details

Details for the file ray-2.44.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: ray-2.44.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 25.7 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.12

File hashes

Hashes for ray-2.44.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5e94bd887898dc08db7f87c0429bc41219aceb552af0b1cd4924c01718fc6a77
MD5 502f5464b88d5b70249ee7bf75bc6c0b
BLAKE2b-256 916302d930da258ad42afa8a9706a27b056d3db106a7d4d0d5ef37e8b09dad8a

See more details on using hashes here.

File details

Details for the file ray-2.44.1-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ray-2.44.1-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6e6bd0430d2eb664ae632c96e74c01e4a1bf14ab2a15102e1809b05ea9e0c2c7
MD5 07958af5a518702e02bfa0facf7977c9
BLAKE2b-256 ac6e263863a31505e8d209a984830b38bbfeec7217a390e1fe475648d6529e4b

See more details on using hashes here.

File details

Details for the file ray-2.44.1-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ray-2.44.1-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0c6d395c05542a882d14e31abec1dd1a1808a9a0c0dcf94200a827d2d04c08a1
MD5 39a7c42bf2c158c8b66716c0e60228b3
BLAKE2b-256 0ce0b835452189652c8490b5bd9ca2c3ef4cf6b8e017b4ce2e95e2088dfb5e6f

See more details on using hashes here.

File details

Details for the file ray-2.44.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ray-2.44.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c21a452227eeecfa3d89b50480d1f9bab11b15c9b3695af41421ab8e7e608cfd
MD5 69ab279e886a6acbad01c050cbc6a162
BLAKE2b-256 37c650eafa4f772719e9ef0b5568e171b3b9e66c103f7d93955e735aebc9f262

See more details on using hashes here.

File details

Details for the file ray-2.44.1-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ray-2.44.1-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 949dbd735e5edec80f6140fa6bb536248c7c97535fe5a11acd279295b7bd1a6d
MD5 748ffcfa7101accfb7c10ac2a1adbeb8
BLAKE2b-256 708704379e634f0d7a7810afc3c7e4bd5270a3b7990003e754f9dfe38573fc01

See more details on using hashes here.

File details

Details for the file ray-2.44.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: ray-2.44.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 25.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.12

File hashes

Hashes for ray-2.44.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9decf32c1402f44b5f7a54f29bd422e0ae9a45afc0a10090acf9ba6011ca12a7
MD5 64955cf819453a7f7ff88d1b2e7937d8
BLAKE2b-256 fcb888e3a58b7cfab000d027094dfc7d51a660c37252da8a6cdc924412bd8127

See more details on using hashes here.

File details

Details for the file ray-2.44.1-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ray-2.44.1-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 18073261c09811d5faefc918abbd8a6bf5f4968277eeae6fbc0992e3724d1496
MD5 1d013da8db512030a7c4144ff067f282
BLAKE2b-256 93f19108c4f878e3cacb767b7dfbbc3a26537c79ab516d2530b9f63b558ba4bb

See more details on using hashes here.

File details

Details for the file ray-2.44.1-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ray-2.44.1-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3a3db83c54085535bed9b4861d871f6527c5df61532bf7d2285701485de8968f
MD5 7f31efabca4af1176f20babbda95c829
BLAKE2b-256 8ed4ed54f08a2a4c3531ce66d005c7d2894f2a09be90013aef07d6d054f49655

See more details on using hashes here.

File details

Details for the file ray-2.44.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ray-2.44.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6f221b1426d8657ce0c24508d5ff11cabc4a8c40a833c8c5bb63e2217f37cfd9
MD5 249a0dc83ca84c5f5d5ffb5a4eabe4b1
BLAKE2b-256 e9107423d0b35f2a9982e3b0286e6311ae5f0bcdfaecc4d80678527f32d664d5

See more details on using hashes here.

File details

Details for the file ray-2.44.1-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ray-2.44.1-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 7d83999ead98bed7e70afddcda870cc1684773cb888e90768ce1a4c72c5fe009
MD5 19a4e67028c16f38015451791d56e759
BLAKE2b-256 4a22ff1fd5fe8e46e5129e8f71486c0599f4d5d4c49a3448a25bc0d813f039ef

See more details on using hashes here.

File details

Details for the file ray-2.44.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ray-2.44.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 25.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.12

File hashes

Hashes for ray-2.44.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 35028f39090de977374f7ecdd10fdbd6cffd1dece22c31a9143b5be1da76ac50
MD5 9f2aad97951e2d9d05ae64b7fab0b93f
BLAKE2b-256 d48672ba1067402c3687b0788413c9faf2bf55f01691f7f52d11a6c7d119f2f0

See more details on using hashes here.

File details

Details for the file ray-2.44.1-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ray-2.44.1-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1cadfa4ec992d3f9c56ffc5ce22b4a937546954a3f5ea10f32d3cf870e0a6c37
MD5 1221a28e73f025e5023c25c14c10b75d
BLAKE2b-256 7e7c3544cca730265bb6f7a4900b7b7018c08ce5ec89bf7b6102901fe0bcd67b

See more details on using hashes here.

File details

Details for the file ray-2.44.1-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ray-2.44.1-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 72d09a7bd2803979c322f0820f1138257b2fe7f557a615b6521441a1a14a044a
MD5 c5fa0a4bc01bf9840b06b29c26a61045
BLAKE2b-256 75ff5c42b9a064587d8dda88d6a403f5007391dde6885f62ed576446587970cf

See more details on using hashes here.

File details

Details for the file ray-2.44.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ray-2.44.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 16ecb31e1156a8952ad7a27da6e91704a67e8f37cb5519b0afc76fb5b21515d6
MD5 9884f23d57f0b8ebca1d0d102d951357
BLAKE2b-256 c86409ed6d8a8f81e01e69a0cf39dc13676867723cd3be23596cdc3c87459ebc

See more details on using hashes here.

File details

Details for the file ray-2.44.1-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for ray-2.44.1-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 12e94c27fedd703566de016314c8a5b164a96c5802313c64e7b643157c3930eb
MD5 bf2e30dd76a3b27ceac45e04116aeb17
BLAKE2b-256 faa044f1b58fa895350a4c25e6d1b0b462556926078b36d5ce5a4af2afb7f260

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page