Skip to main content

Ray provides a simple, universal API for building distributed applications.

Project description

https://github.com/ray-project/ray/raw/master/doc/source/images/ray_header_logo.png https://readthedocs.org/projects/ray/badge/?version=master https://img.shields.io/badge/Ray-Join%20Slack-blue https://img.shields.io/badge/Discuss-Ask%20Questions-blue https://img.shields.io/twitter/follow/raydistributed.svg?style=social&logo=twitter https://img.shields.io/badge/Get_started_for_free-3C8AE9?logo=data%3Aimage%2Fpng%3Bbase64%2CiVBORw0KGgoAAAANSUhEUgAAABAAAAAQCAYAAAAf8%2F9hAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAAEKADAAQAAAABAAAAEAAAAAA0VXHyAAABKElEQVQ4Ea2TvWoCQRRGnWCVWChIIlikC9hpJdikSbGgaONbpAoY8gKBdAGfwkfwKQypLQ1sEGyMYhN1Pd%2B6A8PqwBZeOHt%2FvsvMnd3ZXBRFPQjBZ9K6OY8ZxF%2B0IYw9PW3qz8aY6lk92bZ%2BVqSI3oC9T7%2FyCVnrF1ngj93us%2B540sf5BrCDfw9b6jJ5lx%2FyjtGKBBXc3cnqx0INN4ImbI%2Bl%2BPnI8zWfFEr4chLLrWHCp9OO9j19Kbc91HX0zzzBO8EbLK2Iv4ZvNO3is3h6jb%2BCwO0iL8AaWqB7ILPTxq3kDypqvBuYuwswqo6wgYJbT8XxBPZ8KS1TepkFdC79TAHHce%2F7LbVioi3wEfTpmeKtPRGEeoldSP%2FOeoEftpP4BRbgXrYZefsAI%2BP9JU7ImyEAAAAASUVORK5CYII%3D

Ray is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a set of AI libraries for simplifying ML compute:

https://github.com/ray-project/ray/raw/master/doc/source/images/what-is-ray-padded.svg

Learn more about Ray AI Libraries:

  • Data: Scalable Datasets for ML

  • Train: Distributed Training

  • Tune: Scalable Hyperparameter Tuning

  • RLlib: Scalable Reinforcement Learning

  • Serve: Scalable and Programmable Serving

Or more about Ray Core and its key abstractions:

  • Tasks: Stateless functions executed in the cluster.

  • Actors: Stateful worker processes created in the cluster.

  • Objects: Immutable values accessible across the cluster.

Learn more about Monitoring and Debugging:

Ray runs on any machine, cluster, cloud provider, and Kubernetes, and features a growing ecosystem of community integrations.

Install Ray with: pip install ray. For nightly wheels, see the Installation page.

Why Ray?

Today’s ML workloads are increasingly compute-intensive. As convenient as they are, single-node development environments such as your laptop cannot scale to meet these demands.

Ray is a unified way to scale Python and AI applications from a laptop to a cluster.

With Ray, you can seamlessly scale the same code from a laptop to a cluster. Ray is designed to be general-purpose, meaning that it can performantly run any kind of workload. If your application is written in Python, you can scale it with Ray, no other infrastructure required.

More Information

Older documents:

Getting Involved

Platform

Purpose

Estimated Response Time

Support Level

Discourse Forum

For discussions about development and questions about usage.

< 1 day

Community

GitHub Issues

For reporting bugs and filing feature requests.

< 2 days

Ray OSS Team

Slack

For collaborating with other Ray users.

< 2 days

Community

StackOverflow

For asking questions about how to use Ray.

3-5 days

Community

Meetup Group

For learning about Ray projects and best practices.

Monthly

Ray DevRel

Twitter

For staying up-to-date on new features.

Daily

Ray DevRel

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ray-2.49.1-cp313-cp313-manylinux2014_x86_64.whl (70.0 MB view details)

Uploaded CPython 3.13

ray-2.49.1-cp313-cp313-manylinux2014_aarch64.whl (69.2 MB view details)

Uploaded CPython 3.13

ray-2.49.1-cp313-cp313-macosx_12_0_x86_64.whl (69.2 MB view details)

Uploaded CPython 3.13macOS 12.0+ x86-64

ray-2.49.1-cp313-cp313-macosx_12_0_arm64.whl (66.8 MB view details)

Uploaded CPython 3.13macOS 12.0+ ARM64

ray-2.49.1-cp312-cp312-win_amd64.whl (26.2 MB view details)

Uploaded CPython 3.12Windows x86-64

ray-2.49.1-cp312-cp312-manylinux2014_x86_64.whl (70.1 MB view details)

Uploaded CPython 3.12

ray-2.49.1-cp312-cp312-manylinux2014_aarch64.whl (69.3 MB view details)

Uploaded CPython 3.12

ray-2.49.1-cp312-cp312-macosx_12_0_x86_64.whl (69.3 MB view details)

Uploaded CPython 3.12macOS 12.0+ x86-64

ray-2.49.1-cp312-cp312-macosx_12_0_arm64.whl (66.9 MB view details)

Uploaded CPython 3.12macOS 12.0+ ARM64

ray-2.49.1-cp311-cp311-win_amd64.whl (26.2 MB view details)

Uploaded CPython 3.11Windows x86-64

ray-2.49.1-cp311-cp311-manylinux2014_x86_64.whl (70.1 MB view details)

Uploaded CPython 3.11

ray-2.49.1-cp311-cp311-manylinux2014_aarch64.whl (69.3 MB view details)

Uploaded CPython 3.11

ray-2.49.1-cp311-cp311-macosx_12_0_x86_64.whl (69.3 MB view details)

Uploaded CPython 3.11macOS 12.0+ x86-64

ray-2.49.1-cp311-cp311-macosx_12_0_arm64.whl (66.9 MB view details)

Uploaded CPython 3.11macOS 12.0+ ARM64

ray-2.49.1-cp310-cp310-win_amd64.whl (26.2 MB view details)

Uploaded CPython 3.10Windows x86-64

ray-2.49.1-cp310-cp310-manylinux2014_x86_64.whl (69.9 MB view details)

Uploaded CPython 3.10

ray-2.49.1-cp310-cp310-manylinux2014_aarch64.whl (69.1 MB view details)

Uploaded CPython 3.10

ray-2.49.1-cp310-cp310-macosx_12_0_x86_64.whl (69.3 MB view details)

Uploaded CPython 3.10macOS 12.0+ x86-64

ray-2.49.1-cp310-cp310-macosx_12_0_arm64.whl (66.9 MB view details)

Uploaded CPython 3.10macOS 12.0+ ARM64

ray-2.49.1-cp39-cp39-win_amd64.whl (26.3 MB view details)

Uploaded CPython 3.9Windows x86-64

ray-2.49.1-cp39-cp39-manylinux2014_x86_64.whl (69.9 MB view details)

Uploaded CPython 3.9

ray-2.49.1-cp39-cp39-manylinux2014_aarch64.whl (69.1 MB view details)

Uploaded CPython 3.9

ray-2.49.1-cp39-cp39-macosx_12_0_x86_64.whl (69.3 MB view details)

Uploaded CPython 3.9macOS 12.0+ x86-64

ray-2.49.1-cp39-cp39-macosx_12_0_arm64.whl (66.9 MB view details)

Uploaded CPython 3.9macOS 12.0+ ARM64

File details

Details for the file ray-2.49.1-cp313-cp313-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ray-2.49.1-cp313-cp313-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d78ef3a7ae48819d640fc05006bf2a7caab48b15c567a53a79c015f3d0054b3d
MD5 0d266b6ec139ea5f4fd444414868f55a
BLAKE2b-256 7628dcb62c8da01d141a61b96e6b5fe89b922cff04ab1bd5979e18f0d9b6ccae

See more details on using hashes here.

File details

Details for the file ray-2.49.1-cp313-cp313-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ray-2.49.1-cp313-cp313-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 94e1c5068897c63546d09ea263a8844ce163c6d80ce30b1af3adc753708be63c
MD5 ea28d72a7c315bf6922e1f3aaadefa27
BLAKE2b-256 66d93fe6422e9abf386b0f45423b414c5f66e69dd59dad926eb1c9fd3abb75dd

See more details on using hashes here.

File details

Details for the file ray-2.49.1-cp313-cp313-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for ray-2.49.1-cp313-cp313-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 0fb2e28c80e4599ffec3a34e926b9b012ad1c350f49cdb8d8892dd7ab93b4789
MD5 838eb64da5f93078e7f2864ffbd54d8e
BLAKE2b-256 73afe4d7b0b86cbfdc7183b3590d4d2f7b97f0da55a6547f94e59fc03ce7130d

See more details on using hashes here.

File details

Details for the file ray-2.49.1-cp313-cp313-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ray-2.49.1-cp313-cp313-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 5d19e568a8cfbccf128bf34f9ce48bcbd11e9f0b94db190404f6beb55ae495d2
MD5 bf3a9f320dc6aa71d6c5b66ccf418513
BLAKE2b-256 2ef59648f3e7e8cdb4fe0b9444b4cbf89cf4ba77bcbd684d320e059dfed22383

See more details on using hashes here.

File details

Details for the file ray-2.49.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: ray-2.49.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 26.2 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.12

File hashes

Hashes for ray-2.49.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 96bfdc301f38ce626fd638396cd2f52c6e3c6ba751b475f54db17152c4bdf5ab
MD5 8216f4ed931bfb51498cb7a845cb822d
BLAKE2b-256 f4fe049ec402bccf0fa38f648834b496fc9c707b7593273cf9bdaf085c72b071

See more details on using hashes here.

File details

Details for the file ray-2.49.1-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ray-2.49.1-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 484064fca02732e0b6f4a09dad0d1fb6abd4ca4b6d9bf7c26ab7a17a2887cd09
MD5 15191022b80a6662ea30c08901089239
BLAKE2b-256 0002c81260c0f94bd34a1442ea488bdd433dfc9e6ed6211c9a59bc4157b8e00e

See more details on using hashes here.

File details

Details for the file ray-2.49.1-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ray-2.49.1-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cf63b916e399c2a4d484249611a96cee283cef32e544126115a4ad3e872c34eb
MD5 738f4a6a16e371ac89f0daa1d4e3c22a
BLAKE2b-256 c6ba77eae921fc2595087516df6efc0ca03caacc14d16592341985916f1aed13

See more details on using hashes here.

File details

Details for the file ray-2.49.1-cp312-cp312-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for ray-2.49.1-cp312-cp312-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 f9365de3a9a661ccf089dfaac01c8b68ba00c98443330ef678e0c0248272c722
MD5 64c325bb88ad4b94f5ec056ba86e7e73
BLAKE2b-256 ed768530d5fc58cf73aef433567db5df5b703436e4891bc16c6cd66bee7125c8

See more details on using hashes here.

File details

Details for the file ray-2.49.1-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ray-2.49.1-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 f7a715855d179c1dd6ae2e8b5f8919638cde379a5b157963a0bd74d1178b8b5a
MD5 396839663f8156fa75d2f69795ab1d87
BLAKE2b-256 273dbcfab305bbbb18b47071fc03688bfeb50460dd9b43fa0c18bbdb65712aa8

See more details on using hashes here.

File details

Details for the file ray-2.49.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: ray-2.49.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 26.2 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.12

File hashes

Hashes for ray-2.49.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0d97b2cd1ffa6b7f9e965d25471584ef172581f1b8d4b8413fcdfb843debe9f6
MD5 ba7d5021c170a11574e7bf063caa856f
BLAKE2b-256 9ccdccc9e30337d60b308f96e295d361aed5a907458fac699c7849128df0eae3

See more details on using hashes here.

File details

Details for the file ray-2.49.1-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ray-2.49.1-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c8a039447c3049e336dbaf9ff16732943aff8bde7d5376390bc5b71eb08cb996
MD5 4925933e158b14609772dcf56940d17b
BLAKE2b-256 48900f8baa078938bb807316eb454e348b852d5aeac7d8c0d733771fb3f0cdfd

See more details on using hashes here.

File details

Details for the file ray-2.49.1-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ray-2.49.1-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cb6fde412e634f93333c646b1089e4d3184bc7fcb7fc02818891b281a80240d2
MD5 e95cda885c992cfdcea8220531b17522
BLAKE2b-256 c9d37d4c92921e6a17bf1bc166e2755449fe7ff5faaf92ac6d7e5aa4b4eccfd5

See more details on using hashes here.

File details

Details for the file ray-2.49.1-cp311-cp311-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for ray-2.49.1-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 5b1e00086156a1d589664d1ecce3d4589b089cbab09d7b8780360e5b34ae907a
MD5 35cbfd3dbb52c5146b8fc77a1b258508
BLAKE2b-256 3471c1c3223a6e65b1bedb5ee5a839222cf5249e03be3c824db77d80f7537708

See more details on using hashes here.

File details

Details for the file ray-2.49.1-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ray-2.49.1-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 94326db0c83f7f391352b135b37a8eca737c1addf18902ab190be6b8608a8039
MD5 872ebda38d2bb27aa33971a120e2737f
BLAKE2b-256 44d0302010ae945b69d7c3ca79aceb16fc991ed0cfcbb26408a10bab452dbb26

See more details on using hashes here.

File details

Details for the file ray-2.49.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: ray-2.49.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 26.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.12

File hashes

Hashes for ray-2.49.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e7050b6fc49af1de33dc6e4cd1368e6b408a5d773baf484a54694f93aa8c5cba
MD5 537c65c523c1a5b762c37fb39be1cd35
BLAKE2b-256 a9a880139cef3827a09d864d8b7b036f32337dff8f22146ee816598b647baea0

See more details on using hashes here.

File details

Details for the file ray-2.49.1-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ray-2.49.1-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9384d27059caf86a38cbbcb422ab61b68de87333784bf1b22722d74fdba01ef6
MD5 4bd847e38955d94d9a183ebbdba2005b
BLAKE2b-256 1933a93006a038e38d697b0a068a8516ee1061ab48cbd1be98707bedd328a86c

See more details on using hashes here.

File details

Details for the file ray-2.49.1-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ray-2.49.1-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8f39abe1e4ea5e4dde2567e7e7af7b41f7eb53f6a9c3d3d1cb800fb7a3652104
MD5 367197ddf2f8992b6ec738230f7ef318
BLAKE2b-256 1bf8b7d31c92b5a83550fb79621c7ac8c626576d6c22136099b127eeedbbbe6e

See more details on using hashes here.

File details

Details for the file ray-2.49.1-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for ray-2.49.1-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 99086b4bb32038bd63b7575667fdc1425cb751afe0434ed0d158e3d3ee0c726f
MD5 395eb3d480a1c04d354e017b8c9ae0c0
BLAKE2b-256 56cff565f38b41b3297a1c234815ef61a70c50e3ce4d8db4d0660db8203f64a0

See more details on using hashes here.

File details

Details for the file ray-2.49.1-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ray-2.49.1-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 f8e12dd7db8215a86ef7183a2c9c22102880e0ecd08f94b1d17ad9e607e4a359
MD5 8e07331c30526b340fe1b1cbf9b16dd3
BLAKE2b-256 08393021a154dff3314dd5fb7636cb388682c7d418f8b4c8a53a4f10f887b3ae

See more details on using hashes here.

File details

Details for the file ray-2.49.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ray-2.49.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 26.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.12

File hashes

Hashes for ray-2.49.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a62977cc83d9b38d0e5fbe37596cd4354ec838d3d52427f5d7fb193724c10819
MD5 9290aac84c680f1484c44877d20b62f6
BLAKE2b-256 f2ec158e195a9915419db0ea7325dd9d2a5eeef18f30e7b7a321818fd565d730

See more details on using hashes here.

File details

Details for the file ray-2.49.1-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ray-2.49.1-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3d98a7abdf7f40a05eb5211c5e82687d99f93c5f674fb8e90bbd8ee2a6975476
MD5 10262f2219b05e85db53036251c99767
BLAKE2b-256 fb8e0ad6c08c9ce1e92e5516adca7fd8dcc89983de62bca337cae146d37a8af2

See more details on using hashes here.

File details

Details for the file ray-2.49.1-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ray-2.49.1-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bdc57394711fdbc020d57bb9bac5d78956d92b963bdf100e55e774ed814361a4
MD5 c086571a30e482872df039f2e615e600
BLAKE2b-256 fc929af4971289abd719cbd5e5a2d13549d854d27c5ae1ef122af282681ab1af

See more details on using hashes here.

File details

Details for the file ray-2.49.1-cp39-cp39-macosx_12_0_x86_64.whl.

File metadata

  • Download URL: ray-2.49.1-cp39-cp39-macosx_12_0_x86_64.whl
  • Upload date:
  • Size: 69.3 MB
  • Tags: CPython 3.9, macOS 12.0+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.12

File hashes

Hashes for ray-2.49.1-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 ed6844351456a9745bbf51e58935943d96570f9607d9dc07e86580c2fd193d7f
MD5 4299a3ef69d35b0686db153c202251a0
BLAKE2b-256 120c4748aa94b6b25db5c3bc3ca605d507982c40ba7d60a6859c36d6beefb3db

See more details on using hashes here.

File details

Details for the file ray-2.49.1-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

  • Download URL: ray-2.49.1-cp39-cp39-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 66.9 MB
  • Tags: CPython 3.9, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.12

File hashes

Hashes for ray-2.49.1-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 abd7cfa2c1b044f5b6780c9e6e8ce064eb832d09bcc897f33106717911e818ac
MD5 2c0e42b6dca501dd83da4c8cbdeed3e8
BLAKE2b-256 797ad28839a4ad14358d7f49928571b8cce376cfdaf743f307f739b365bd2656

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page