Skip to main content

TensorFlow Recommender Systems Models for Implicit Feedback

Project description


Here we have implemented various Recommender System algorithms for implicit feedback and sequential recommendation. These algorithms are implemented in Python and TensorFlow. This package aims to provide clear, annotated, and efficient implementations of these algorithms along with wrapper classes and methods for easy experimentation and usage.

Implicit Feedback

This package focuses on recommendations based on sequential and implicit feedback. In these settings there is no explicit numerical rating of items by users - only the record of actions they have taken. Thus there is only observed positive feedback - if a user u has not interacted with item i, it could either be because they dislike the item (negative) or they merely have not come upon this item yet (positive).

The algorithms implemented here approach the implicit feedback recommendation problem from a pairwise ranking perspective, where we assume that an item a user has interacted with should be ranked higher than an item that the user has not yet interacted with.

Algorithms Implemented


RecSysModels is on PyPI, so you can install the package with pip:

$ pip install recsys_models


Sample Usage

See the sample_pipeline Jupyter Notebook for sample usage. In order to run this, you will need to download the MovieLens 1M Dataset released in 2003 by the wonderful folks at the GroupLens Lab at the University of Minnesota.


For interoperability, this package supports initializing a model with pretrained weights in the form of numpy arrays exported from models trained under other frameworks. Please see individual model files (e.g. BPR) for a description of trainable variables and their shapes.

This package is released under GNU GPLv3 by Shuyang Li

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for recsys-models, version 0.1.3
Filename, size File type Python version Upload date Hashes
Filename, size recsys_models-0.1.3-py3-none-any.whl (34.5 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size recsys_models-0.1.3.tar.gz (16.3 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page