Skip to main content
Join the official 2019 Python Developers SurveyStart the survey!

A package for comparing trained embedding models.

Project description


repcomp (short for representation comparison) is a package for comparing trained embedding models. You can use it to compare Deep Neural Networks, Matrix Factorization models, Graph Embeddings, Word Embeddings, etc.

repcomp supports the following embedding comparison approaches:

  • Nearest Neighbors: Fetch the nearest neighbor set of each entity according to embedding distances, and compare model A's neighbor sets to model B's neighbor sets.
  • Canonical Correlation: Treat embedding components as observations of random variables and compute the canonical correlations between model A and model B.
  • Unit Match: Form a unit-to-unit matching between model A's embedding components and model B's embedding components and measure the correlations of the matched units.

A simple example comparing random embeddings:

  from repcomp.comparison import CCAComparison
  import numpy as np

  # Generate random embedding matrices
  num_samples = 100
  num_components = 10
  embedding_1 = np.random.random((num_samples, num_components))
  embedding_2 = embedding_1 + 0.5 * np.random.random((num_samples, num_components))

  # Run the comparison
  comparator = CCAComparison()
  sim = comparator.run_comparison(embedding_1, embedding_2)
  print("The canonical correlation similarity is {}".format(sim["similarity"]))

A more involved example comparing word embeddings:

  import gensim.downloader as api
  import numpy as np
  from repcomp.comparison import NeighborsComparison

  # Load word vectors from gensim
  glove_wiki_50 = api.load("glove-wiki-gigaword-50")
  glove_twitter_50 = api.load("glove-twitter-50")

  # Build the embedding matrices over the shared vocabularies
  shared_vocab = set(glove_wiki_50.vocab.keys()).intersection(
  glove_wiki_50_vectors = np.vstack([glove_wiki_50.get_vector(word) for word in shared_vocab])
  glove_twitter_50_vectors = np.vstack([glove_twitter_50.get_vector(word) for word in shared_vocab])

  # Run the comparison
  comparator = NeighborsComparison()
  print("The neighbors similarity between glove-wiki-gigaword-50 and glove-twitter-50 is {}".format(
    comparator.run_comparison(glove_wiki_50_vectors, glove_twitter_50_vectors)["similarity"]))

Project details

Release history Release notifications

This version


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for repcomp, version 0.1
Filename, size File type Python version Upload date Hashes
Filename, size repcomp-0.1-py3-none-any.whl (6.1 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size repcomp-0.1.tar.gz (4.3 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page