Skip to main content

Table logger using Rich, aimed at Pytorch Lightning logging

Project description


Table logger using Rich, aimed at Pytorch Lightning logging


  • display your training logs with pretty rich tables
  • describe your fields with goal ("higher_is_better" or "lower_is_better"), format and name
  • a field descriptor can be matched with any regex
  • a field name can be computed as a regex substitution
  • works in Jupyter notebooks as well as in a command line
  • integrates easily with Pytorch Lightning


import time
import random
from rich_logger import RichTablePrinter
logger_fields = {
    "step": {},
    "(.*)_precision": {"goal": "higher_is_better", "format": "{:.4f}", "name": r"\1_p"},
    "(.*)_recall": {"goal": "higher_is_better", "format": "{:.4f}", "name": r"\1_r"},
    "duration": {"format": "{:.1f}", "name": "dur(s)"},

def optimization():
    printer = RichTablePrinter(key="step", fields=logger_fields)
    t = time.time()
    for i in range(10):
        printer.log({"step": i, "task_precision": i/10. if i < 5 else 0.5-(i-5)/10.})
        printer.log({"step": i, "task_recall": 0. if i < 3 else (i-3)/10., "duration": time.time() - t})
        t = time.time()


Use it with PytorchLightning

from rich_logger import RichTableLogger
trainer = pl.Trainer(..., logger=[RichTableLogger(key="epoch", fields=logger_fields)])

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rich_logger-0.1.4.tar.gz (4.3 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page